Enolates: Deprotonation o to a
Carbonyl
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Enolate chemistry is used to E—X
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Acidity depends on stability of conjugate enolate.




Enolates Best Formed With Strong,
Non-Nucleophilic Bases
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‘OH not strong enough to deprotonate
quantitatively (but enough enolate is
formed for some reactions).
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Enolizable Protons Racemize in

Base
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in even mild base.




Halogenation at the a Carbon

In Base:
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Problem: Electron-withdrawing halogen stabilizes
negative charge at a carbon;

Formation of second enolate easier
than the first.

Even though enolate is not quantitatively
generated by ~OH, enough enolate is
present to react.
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The Haloform Reaction:
« Occurs only for methyl ketones. l "OH

* Driven by stability of ~CX.

Even though enolate is not quantitatively
generated by ~OH, enough enolate is
present to react.




Halogenation at the a Carbon

In Base:
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Alkylation of Enolates
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Enamine Alkylation
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Combination of 2° amine and
enolizable aldehyde or ketone
forms a stable enamine.

Enamine is readily hydrolyzed
back to carbonyls in H,O.
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Kinetic vs. Thermodynamic Enolates
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“kinetic”
(less-substituted)
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Bulky base
removes
less-hindered
proton.

O Which carbon is deprotonated?
Which enolate is generated?

H
NaOH
25°C

N\
Jo

l R-X
0

N

R

“thermodynamic”
(more-substituted)
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Problem:

‘OH is also nucleophilic;
will react with RX.




Alkylation of Ester, Dialkylamide Enolates
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Alkylation of Ester, Dialkylamide Enolates
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mixture of products.




