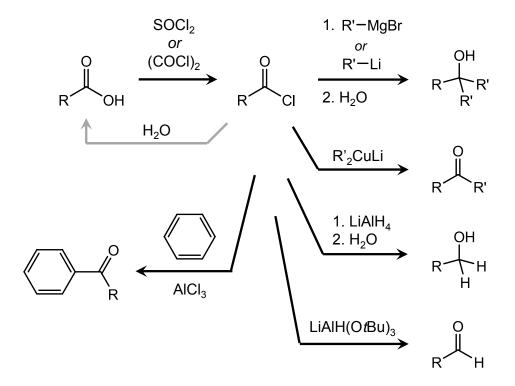
Exchanging Carboxylic Acid Derivatives


Often impractical to synthesize carboxylic acid derivatives by equilibrium reactions.

Solution: "Activate" acyl group first, by converting acid to a more reactive derivative.

Acyl Halides as Acylating Agents

Acyl halides are so reactive, no acid/base catalyst necessary.

Reactivity of Acyl Halides

Acid Anhydrides

Useful applications

• Formylation. (Formyl chloride unstable.)

$$H_3C \xrightarrow{O} H \xrightarrow{R-OH} R-OH$$

undergo same reactions as acyl halides.

• Cyclic anhydrides.

HO

OH $(COCI)_2$ $(1 \ equiv)$ $(1 \ equiv)$

Acylation in Polar Media

For molecules that are only soluble in H₂O, can't use acyl halides.

(Connecting polymer to protein increases circulation time of injected protein in blood.)

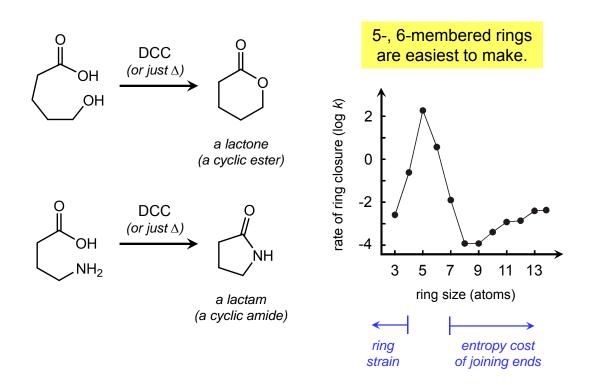
Carbodiimide Coupling of Nucleophiles and Carboxylic Acids

$$N = C = N$$

$$dicyclohexylcarbodiimide$$

$$(DCC)$$

$$N = C = N$$


$$N = C + M$$

$$CH_3$$

$$CH$$

Indirect Coupling via NHS Esters

Lactones and Lactams

