| NAME | |
 | | |------|--|------|--| | | | | | | | | | | | ID# | | | | # ORGANIC CHEMISTRY I (2301) 9:30 – 10:20 am, July 21, 2011 #### Exam 3 #### Form A If you want to pick this exam up on Tuesday in class (in public), please check the box on the right: If you do not check the box, I will not bring your exam to class on Tuesday, and you will need to pick up your exam in private from Chemistry department staff in 115 Smith beginning Tuesday, July 26th. Exams that are not picked up within two weeks will be disposed of. A periodic table and a chart of reaction conditions are attached to the back of this exam as aids. Otherwise, you are not permitted to use any other materials (including notes, books, or electronic devices of any kind). Right now, write your name at the top of this page, and fill in the bubbles on the multiple-choice answer sheet for your name and your 7-digit student ID number (in columns 1-7 of the "Identification Number" section, as shown at right). When the exam begins, also write your name at the top of page 5. You may use pen or pencil. However, re-grades will be considered only for exams completed in pen. Please write your answers in the bubble sheet for the multiple choice portion of the exam, and in the boxes/spaces provided for the written portion. If your answer is not in the appropriate space in the written portion (say, for example, it's on the back of the page), draw us an arrow and/or note telling us where to look. ### **Multiple-Choice Problems** Please answer these problems on the bubble sheet. (4 pts each) Each of the reactions below is drawn with two possible products, marked (a) and (b). If one of the two products predominates, answer with the letter corresponding to the correct product. If the two products are produced <u>equally</u>, answer (c) BOTH. If neither product would result from the reaction, answer (d) NEITHER. 5. $$H_3C$$ $C = C$ CH_3 a. a. O $$H_3C$$ CH_3 CH_3 CH_3 CH_3 b. C. вотн (equally) d. **NEITHER** 6. $$CH_3-C\equiv C-H$$ HBr (excess) a. $$Br$$ Br CH_3 b. C. **NEITHER** 7. CH₃ $$D = deuterium, heavy isotope of hydrogen)$$ a. $$H$$ CH_3 b. $$D$$ CH_3 C. **NEITHER** 8. $$\xrightarrow{Br_2} \xrightarrow{hv}$$ a. C. d. **NEITHER** (4 pts each) Each of the reactions below is drawn with two possible reaction conditions. If only one of the two reaction conditions would generate the given molecule as the major product, answer with the corresponding letter. If both sets of conditions would accomplish the reaction, answer (c) "BOTH". If neither set of reaction conditions would succeed, answer (d) "NEITHER". (3 pts each) The chemical structure of isopentane shown on the right has three C-H bonds labeled. - **12.** Which of the three bonds has the smallest bond dissociation energy (BDE)? - **13.** Which C-H would be most likely replaced by a C-Cl in a radical chlorination with Cl₂ and UV light? Scoring: 14. _____/ 20 16. ____/ 15 15. _____/ 15 **Total Score:** _____/50 - 14. (20 pts) For each of the reactions shown below, draw a mechanism that explains how the product is generated from the starting material. In your answer, make sure that you: - Draw each step of the mechanism separately; - Use "electron pushing" to show where the electrons in each step go; - Illustrate stereochemistry where appropriate; Mechanism: • Use only the molecules that you are given; do not invoke reactants or solvents that aren't in the problem. $$H_3C$$ H_3C Mechanism: 15. (15 pts) Draw the missing reactant or product in the empty boxes. For products, give the predominant, most favored product. Illustrate stereochemistry in your answer where appropriate. For reactions that yield multiple enantiomers, draw only one enantiomer in the box, and include the note "+ enantiomer". $$\begin{array}{c} CI \\ \hline \\ (mCPBA) \\ \hline \\ H_3C \end{array} \begin{array}{c} H''''CH_2CH_3 \\ \hline \\ H_3C \end{array}$$ an alkene 16. (15 pts) For each set of starting materials and products shown below, **propose a multistep synthesis**. In addition to the molecules shown, you can use any reagents and reactions we've learned about in class. You might discover multiple answers to this problem; draw only your best (one) synthetic route. Feel free to draw an incomplete route—we will give you partial credit where we can. $$H-C \equiv C-H \quad and \quad H \longrightarrow \qquad H-C \equiv C \longrightarrow HO$$ ## **Exam 3 Chart of Reaction Conditions** Reactions to consider Cl₂ or Br₂, Acid-Base, S_N2 , S_N1 , E2, E1 from Ch. 6-7 (Exam 2): hν HBr H₂SO₄ **HBr** H_2O N—Br Br_2 1. Hg(OAc)₂ (NBS) H₂O or ROH 2. NaBH₄ (benzoyl peroxide) hv or AIBN 1.BH₃•THF Br_2 *m*CPBA H₂O or ROH 2. H₂O₂, OH⁻ H_2O CI (mCPBA) KMnO₄ $Pt/H_2(g)$ 1.O₃ (cold, dilute) 2. (CH₃)₂S H₂O, OH NaNH₂ Na KMnO₄ 1.0_{3} NH_3 Pd, BaSO₄ H_2O , pH 7 $2.H_2O$ ("Sia₂BH") $H_2(g)$ 2. H₂O₂, HgSO₄ 1. KMnO₄ NaOH H₂SO₄ KOH, Δ $2.H_3O^+$ (quinoline) | Г | a. E - | a: - 80 | 5.10 | E 0 | - c o | | | _ in _ 77 m (| | |-------|----------------------------|--|---|-------------------------------------|--|--|--|---|--| | 84 8A | Helium
4.00 | 10
Ne
Neon
20.18 | 18
Ar
Argon
39.95 | 36
Krypton
83.80 | 54
Xe
Xenon
131.29 | 86
Ra don
(222) | | 71 | | | | 17
7A | 9
F
Fluorine
19.00 | 17
Chlorine
35.45 | 35
Br
Bromine
79.90 | 53
—
lodine
126.90 | 85 At Astatine (210) | | 70
Yb
Ytterbium
173.04
102
No
Nobelium
(259) | | | | 16
6A | 8
Oxygen
16.00 | 16
Sulfur
32.07 | (O) | 52
Te
Tellurium
127.60 | 84 Po Polonium (209) | | 69 Tm Thulium 168.93 101 Md Mendelevium (258) | | | | 15
5A | 7
Nitrogen
14.01 | 15
P
Phosphorus
30.97 | 33 AS Arsenic 74.92 | 51
Sb
Antimony
121.76 | 83
Bi
Bismuth
208.98 | | 68
Er
Erbium
167.26
100
Fm
Fermium
(257) | | | | 14
4 A | 6
C
Carbon
12.01 | 14
Silicon
28.09 | ٤ | 50
Sn
Tin
118.71 | 82
Pb
Lead
207.2 | | 67
Ho
Holmium
164.93
99
Es
Einsteinium
(252) | | | | 13
3A | 5
B
Boron
10.81 | 13
AI
Aluminum
26.98 | | 49 Ln Indium 114.82 | 81
T
Thallium
204.38 | | 66 67 Dy Dysprosium Dysprosium Holmium 162.50 164.93 98 Cf Es Californium (251) | | | | ' | | 12
28 | 30 Zn Zinc 65.39 | 48
Cadmium
112.41 | 80
Hg
Mercury
200.59 | | 65
Tb
Terbium 158.93
97
97
Bk
Berkelium (247) | | | | | | - | 11
18 | 29
Copper
63.55 | 47
Ag
Silver
107.87 | 79
Au
Gold
196.97 | | 64
Gd Gadolinium 157.25 96 Cm Curium (247) | | | | Atomic number Element symbol Element name Average atomic mass* 8 9 10 | 28
Nickel
58.69 | 46 Pd Palladium 106.42 | 78 Pt Platinum 195.08 | | 63
Eu
Europium
151.96
95
Am
Americium
(243) | | | | | | | ool
c mass*
 | 27
Co
Cobalt
58.93 | 45
Bh
Rhodium
102.91 | 77
 r
 Iridium
 192.22 | 109 Mt Meitnerium (268) | 62
Samarium
150.36
94
Pu
Plutonium
(244) | | | | Key
tomic number | | 26
Te
Iron
55.85 | 44 Bu
Ruthenium | 76
Os
Osmium
190.23 | 108
HS
Hassium
(269) | | | | | | ¥ | +++ | - ~ E | 25
Wn
Manganese
54.94 | 43
Tc
Technetium
(98) | 75 Re
Rhenium
186.21 | 107
Bh
Bohrium
(264) | 60
Nd
Neodymium
144.24
U
Uranium
238.03 | | | | | 111 Nation | 6
6
6
6
8 | E C | Molybdenum 95.94 | 74 W Tungsten 183.84 | Sg
Seaborgium
(266) | 59 60 61 Prassodymium Neodymium Promethium 140.91 144.24 (145) 91 92 93 Pa U Neptunium 231.04 238.03 (237) | | | | | 5
5B | 23
V
Vanadium
50.94 | 41 Nb Niobium 92.91 | 73 Ta Tantalum 180.95 | 105 Db Dubnium (262) | 58
Cerium
140.12
90
Th
Thorium
232.04 | | | | | | 4 4
84 | 22
Ti
Titanium
47.87 | 40 Zr Zirconium 91.22 | 72
Hf
Hafnium
178.49 | 104
Rf
Rutherfordium
(261) | ue | | | | | | m | 8 8
8 8 | Scandium
44.96 | 39 Y ttrium 88.91 | 57
La
Lanthanum
138.91 | 89
Ac
Actinium
(227) | nntheses, th | | | | 2
2A | Be Beryllium 9.01 | 12
Mg
Magnesium
24.31 | 20
Ca
Calcium
40.08 | 38
Sr
Strontium
87.62 | 56
Ba
Barium
137.33 | 88
Ra
Radium
(226) | If this number is in parentheses, then it refers to the atomic mass of the most stable isotope. | | | - ₹ | Hydrogen 1.01 | 3
Li
Lithium
6.94 | 11
Na
Sodium
22.99 | T9
Fotassium
39.10 | 37
Rb
Rubidium
85.47 | 55
Cs
Cesium
132.91 | 87
Fr
Francium
(223) | If this number is in p
it refers to the atomi
most stable isotope. | | | | - | Ø | ო | 4 | Ŋ | ω | | * | | Copyright © 2008 California Department of Education