NAME

ID \#

ORGANIC CHEMISTRY I (2301)

9:30-10:20 am, August 2, 2011

Exam 4

Form A

If you want to pick this exam up on Wednesday in class (in public), please check the box on the right:
If you do not check the box, I will not bring your exam to class on Wednesday, and you will need to pick up your exam in private from
 Chemistry department staff in 115 Smith beginning Thursday, August $4^{\text {th }}$. Exams that are not picked up within two weeks will be disposed of.

A periodic table, a chart of reaction conditions, and tables of typical NMR chemical shifts and coupling constants are attached to the back of this exam as aids. Otherwise, you are not permitted to use any other materials (including notes, books, or electronic devices of any kind).
Right now, write your name at the top of this page, and fill in the bubbles on the multiple-choice answer sheet for your name and your 7 -digit student ID number. When the exam begins, also write your name at the top of page 5 .
You may use pen or pencil. However, re-grades will be considered only for exams completed in pen.
Please write your answers in the bubble sheet for the multiple choice portion of the exam, and in the boxes/spaces provided for the written portion. If your answer is not in the appropriate space in the written portion (say, for example, it's on the back of the page),
 draw us an arrow and/or note telling us where to look.

Multiple-Choice Problems

Please answer these problems on the bubble sheet.
(3 pts each) Identify each of the transformations below as a reduction, an oxidation, or neither.
1.

2.

3.

(4 pts each) Each of the reactions below is drawn with two possible reaction conditions. If only one of the two reaction conditions would generate the given molecule as the major product, answer with the corresponding letter. If both sets of conditions would accomplish the reaction, answer (c) "BOTH". If neither set of reaction conditions would succeed, answer (d) "NEITHER".
4.

a.	b. LAAH_{4}	1. NaBH_{4}
1. LiAlO^{+} 2. $\mathrm{H}_{3} \mathrm{O}^{+}$	2. $\mathrm{H}_{3} \mathrm{O}^{+}$	
c.	d.	
BOTH would work	d.	NEITHER would work

5.

6.

7.

Multiple-choice problems 8-19 are found later in the exam, on pages 6-7.

NAME

Scoring:
20. \qquad / 12
22. \qquad / 10
21. \qquad / 15
23. \qquad / 12

Total Score: \qquad / 49
20. (12 pts) For the reaction shown below, draw a mechanism that explains how the product is generated from the starting material. In your answer, make sure that you:

- Draw each step of the mechanism separately;
- Use "electron pushing" to show where the electrons in each step go;
- Use only the molecules that you are given; do not invoke reactants or solvents that aren't in the problem.

Mechanism:
21. (15 pts) Propose a multistep synthesis of the product shown below from the given starting materials, along with any reagents we have covered in class. You might discover multiple answers to this problem; draw only your best (one) synthetic route. Feel free to draw an incomplete route-we will give you partial credit where we can.

22. (10 pts) Draw the missing reactant or product in the empty boxes. For products, give the predominant, most favored product. Illustrate stereochemistry in your answer where appropriate. For reactions that yield multiple enantiomers, draw only one enantiomer in the box, and include the note "+ enantiomer".

$\xrightarrow{\text { pyridine }}$
23. LiAlH_{4}

Bisphenol A (BPA), a component of polycarbonate plastics, has received a great deal of press over the last few weeks because of the possibility that the molecule might mimic estrogen and thus interfere with normal hormone function, especially in infants. In 2009, Minnesota became the first U.S. state to ban the sale of products intended for infants-including plastic cups and bottles-that contain BPA.

As a state inspector, you extract an additive from a polycarbonate sippy cup and subject it to ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR analysis. The resulting NMR spectra are shown on page 9 . In this problem, you will determine whether the additive is BPA, or the BPA substitute meta-bisphenol (MBP).

Answer the following questions on your multiple-choice bubble form.

(3 pts each) How many resonances would you expect to see in the ${ }^{1} \mathrm{H}$ NMR of each of these additives? In other words, how many inequivalent sets of protons are there in each structure?

bisphenol A (BPA)

meta-bisphenol (MBP)
8. The ${ }^{1} \mathrm{H}$ NMR of bisphenol A should show
a. 3 resonances;
b. 4 resonances;
c. 5 resonances;
d. 6 resonances;
e. none of the above.
9. The ${ }^{1} \mathrm{H}$ NMR of meta-bisphenol should show
a. 3 resonances;
b. 4 resonances;
c. 5 resonances;
d. 6 resonances;
e. none of the above.
(2 pts each) Each proton circled in the structures below could have its resonance split by neighboring protons. What kind of multiplet should each proton produce in a ${ }^{1} \mathrm{H}$ NMR spectrum? (Assume that there is no long-range coupling in these molecules.)

bisphenol A
(BPA)

meta-bisphenol (MBP)
possible answers:
a. singlet
b. doublet
c. triplet
d. quartet
e. none of the above
(2 pts each) The ${ }^{13} \mathrm{C}$ NMR spectrum of the additive is shown below, and could be consistent with either BPA or MBP. Three peaks on the spectrum are labeled A, B, and C. Which carbons of BPA or MBP could these peaks correspond to? Four chemically similar carbons in the structures of BPA and MBP are circled below. If you would assign one of the ${ }^{13} \mathrm{C}$ NMR peaks to that carbon, fill in the appropriate bubble. If you feel that none of the labeled peaks correspond to the circled carbon, fill in bubble \mathbf{D} for "none of the above".

23. (12 pts) Given the ${ }^{1} \mathrm{H}$ spectrum below, is the additive BPA or MBP? On the unfinished skeleton in the box below, indicate your choice by drawing in the two -OH groups, as well as all hydrogens. Then,

- Circle each group of equivalent H’s;
- Assign a ${ }^{1} \mathrm{H}$ chemical shift (δ) to each circled group, within 0.1 ppm ;
- Connect any pair of coupled, inequivalent groups of H's with a double-headed arrow, and then label that arrow with the
 corresponding coupling constant (J).

Your answer to problem 23:

APPENDIX 1A NMR: Proton Chemical Shifts

[^0]
APPENDIX 1A NMR: Proton Chemical Shifts

[^1]
$\mathrm{a}=$ axial, $\mathrm{e}=$ equatorial

APPENDIX 1C NMR: ${ }^{13} \mathrm{C}$ Chemical Shifts in Organic Compounds*:

ppm (TMS) 22021020019018017016015014013012011010090

[^2]
Exam 4 Chart of Reaction Conditions

Periodic Table of the Elements
California Standards Test

	$\begin{gathered} 1 \\ 1 \mathrm{~A} \end{gathered}$																	$\begin{aligned} & 18 \\ & 8 \mathrm{~A} \end{aligned}$
1		$\begin{gathered} 2 \\ 2 A \\ \hline \end{gathered}$						Key					$\begin{aligned} & 13 \\ & 3 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{array}{r} 14 \\ 4 \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 16 \\ & 6 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 7 \mathrm{~A} \\ & \hline \end{aligned}$	2 He Helium 4.00
2	$\begin{gathered} \hline 3 \\ \mathbf{L i} \mathbf{L i t h i u m} \\ 6.94 \\ \hline \end{gathered}$												5 \mathbf{B} Boron 10.81	$\underset{\substack{\text { Carbon } \\ 12.01}}{\mathbf{C}}$		$\begin{gathered} \hline 8 \\ \mathbf{O} \\ \text { Oxygen } \\ 16.00 \\ \hline \end{gathered}$	$\stackrel{\substack{9 \\ \text { Fluorine } \\ 19.00}}{\mathbf{F}}$	${ }^{10}$ Neon 20.18
3	11 Na Sodium 22.99		$\begin{gathered} 3 \\ 3 B \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 4 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ 5 B \\ \hline \end{gathered}$	22.99 6 6 6 B		rage atom 8	ic mass* 9 -8 B	10	$\begin{aligned} & 11 \\ & 1 B \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 2 \mathrm{~B} \\ & \hline \end{aligned}$		$\begin{gathered} 14 \\ \mathrm{Si} \\ \text { Silicon } \\ 28.09 \end{gathered}$		$\begin{array}{r} \hline 16 \\ \mathbf{S} \\ \text { Sulfur } \\ 32.07 \\ \hline \end{array}$	$\begin{gathered} 17 \\ \text { Cliorine } \\ \text { Cl } \\ \hline 5.45 \\ \hline \end{gathered}$	
4		$\begin{gathered} 20 \\ \text { Ca } \\ \text { Calcium } \\ 40.08 \\ \hline \end{gathered}$		$\begin{gathered} 22 \\ \begin{array}{c} \text { Titanium } \\ \text { Tint. } \end{array} \\ \hline 47.87 \end{gathered}$				$\begin{gathered} 26 \\ \text { Fe } \\ \text { Iron } \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ \text { Cobalt } \\ 58.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 28 \\ \mathbf{N i} \\ \begin{array}{c} \text { Nickel } \\ 58.69 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ \text { Copper } \\ 63.55 \end{gathered}$	$\begin{aligned} & 30 \\ & \text { Zn } \\ & \text { Znin } \\ & 65.39 \\ & \hline \end{aligned}$	$\begin{gathered} 31 \\ \text { Ga } \\ \text { Gallium } \\ 69.72 \\ \hline \end{gathered}$					$\begin{gathered} 36 \\ \begin{array}{c} \text { Krypton } \\ \text { Kr } \\ 83.80 \end{array} \end{gathered}$
5			$\begin{gathered} 39 \\ \mathbf{Y} \\ \text { Yttrium } \\ 88.91 \\ \hline \end{gathered}$										$\begin{gathered} \hline 49 \\ \text { In } \\ \text { Indium } \\ 114.82 \\ \hline \end{gathered}$				$\begin{array}{\|c\|} \hline 53 \\ \text { I } \\ \text { lodine } \\ 126.90 \\ \hline \end{array}$	$\begin{gathered} \hline 54 \\ \text { Xe } \\ \text { Xenon } \\ 131.29 \\ \hline \end{gathered}$
6	55 Cs Cesium 132.91								77 $\mathbf{I r}$ lidium lide.22 102	78 $\mathbf{P l}$ $\mathbf{P l a t i n u m ~}$ 195.08	79 Au Gold 196.97		81 TI $\begin{array}{c}\text { Thallium } \\ 204.38\end{array}$	$\begin{aligned} & \hline 82 \\ & \mathrm{~Pb} \\ & \text { Lead } \\ & 207.2 \\ & \hline \end{aligned}$				$\begin{aligned} & \begin{array}{l} 86 \\ \text { Rn } \\ \text { Radon } \\ (222) \end{array} \\ & \hline \end{aligned}$
7							${ }^{107}$ Bohrium (264)	108 Hs (269) Hassium (269)										
* If this number is in parentheses, then it refers to the atomic mass of the most stable isotope.					58 Ce Cerium 140.12					63 Eu Europium 151.96							70 $\mathbf{Y b}$ Y Yterbium 173.04	Li Lutetium 174.97 10
					90 Th Thorium 232.04	91 $\mathbf{P a}$ Protactinium 231.04$\|$	$\xrightarrow[\begin{array}{c}\text { Uranium } \\ 238.03\end{array}]{\substack{92 \\ \hline}}$	93 $\mathbf{N p}$ Neptunium (237)	94 $\mathbf{P u}$ Plutonium (244)	$\underset{\substack{\text { Americium } \\(243)}}{\substack{95 \\ \text { Am } \\ \hline}}$	$\begin{gathered} 96 \\ \text { Cm } \\ \substack{\text { Curium } \\ (247)} \\ \hline \end{gathered}$	97 Bk Berkelium (247)	$\underset{\substack{98 \\ \text { Californium } \\(251)}}{ }$	99 Esinteinium (252)	$\begin{gathered} 100 \\ \text { Fm } \\ \text { Fermium } \\ (257) \\ \hline \end{gathered}$	$\substack{101 \\ \text { Md } \\ \text { Mendelevium } \\ (258)}$	$\begin{gathered} 102 \\ \text { No } \\ \begin{array}{c} \text { Nobelium } \\ (259) \end{array} \\ \hline \end{gathered}$	$\left.\begin{array}{\|c\|}\hline 103 \\ \mathbf{L r} \\ \text { Lawrencium } \\ \text { (262) }\end{array}\right]$

[^0]: ${ }^{a}$ Normally, absorptions for the functional groups indicated will be found within the range shown in black. Occasionally, a functional group will absorb outside this range. Approximate limits are indicated by extended outlines.
 ${ }^{\mathrm{b}}$ Absorption positions of these groups are concentration-dependent and are shifted to lower δ values in more dilute solutions.

[^1]: ${ }^{a}$ Normally, absorptions for the functional groups indicated will be found within the range shown in black. Occasionally, a functional group will absorb outside this range. Approximate limits are indicated by extended outlines.
 ${ }^{\mathrm{b}}$ Absorption positions of these groups are concentration-dependent and are shifted to lower δ values in more dilute solutions.

[^2]: *Relative to internal tetramethylsilane.
 Copyright 1998 by Bruker Analytik GmbH. Used by permission.

