N	A	Μ	Е	
			_	

ID #	 	

ORGANIC CHEMISTRY I (2301)

9:30 - 10:20 am, July 31, 2012

Exam 4

There will be two ways that you can pick up your graded Exam 4:

- You can pick up your graded exam from Andy at office hours that he will hold on Monday, August 6th (9:30-10:30 am) at Coffman Union Starbucks.
- Alternately, you will be able to pick up your graded exam from Chemistry department staff in 115 Smith beginning Monday, August 6th at noon. Exams that are not picked up within two weeks will be disposed of.

A periodic table, a chart of reaction conditions, and a table of typical NMR chemical shifts are attached to the back of this exam as aids. Otherwise, you are not permitted to use any other materials (including notes, books, or electronic devices of any kind).

Right now, write your name and student ID number at the top of this page. When the exam begins, please write your name at the top of the next page.

You may use pen or pencil. However, re-grades will be considered only for exams completed in pen.

Please write your answers in the boxes/spaces provided. If your answer is not in the appropriate space (say, for example, it's on the back of the page), draw us an arrow and/or note telling us where to look.

Scoring:	1	_/9	4	_/16
	2	_/15	5	_/12
	3	_/20	6	_/28

Total Score: _____ / 100

NAME _____

1. (9 pts) Identify each of the transformations below as a reduction, an oxidation, or neither. Circle only one answer for each transformation.

2. (15 pts) For each of the reactions below, **fill in the empty box corresponding to reactants or products**. For reactions that you expect to yield multiple products, give the major product. For reactions that yield multiple enantiomers, draw only one enantiomer in the box, and include the note "+ enantiomer".

3. (20 pts) Each of the reactions on the next two pages is drawn with two possible reaction conditions. If only one of the two reaction conditions would generate the given molecule as the major product, circle those conditions. If both sets of conditions would accomplish the reaction, circle "BOTH". If neither set of reaction conditions would succeed, circle "NEITHER". Circle one answer only.

4. (16 pts) Draw a mechanism (using "electron pushing") for each of the reactions shown below. Draw each mechanistic step explicitly; don't cheat by combining multiple processes in a single step. Use only the molecules shown in the problem; don't invoke generic species. (E.g., don't use "R•" as a generic radical.)

Mechanism (two steps!):

5. (12 pts) Propose a multistep synthesis of the product shown below from the given starting materials, along with any reagents we have covered in class. You might discover multiple answers to this problem; draw only your best (one) synthetic route. Feel free to draw an incomplete route—we will give you partial credit where we can.

6. (28 pts) When acetylbenzene is combined with acetyl chloride and a Lewis acid catalyst—in a reaction that you will learn about in CHEM 2302—three different diacetylbenzenes are generated as products. In this problem, you will imagine that you are a chemist that has performed this reaction, and that you have isolated one of the three products. You have performed ¹H and ¹³C NMR spectra on this product, shown on page 9. In the questions that follow, you will decide which of the three products you have isolated.

(a) How many resonances would you expect to see in the ¹H NMR of each of these products? In other words, how many inequivalent sets of protons are there in each structure? Write your answers in the boxes below.

(b) Each proton highlighted in the structures above could be split by neighboring protons. What kind of multiplet should each proton produce in a ¹H NMR spectrum? (Assume that there is no long-range coupling for the circled proton. But there might be for the others!) Use the abbreviations on the chart on the right, and write your answers in the boxes above.

abbreviations for multiplets

- s: singlet
- d: doublet
- t. triplet
- q: quartet
- dd: doublet of doublets

- (c) ¹H and ¹³C spectra for the isolated molecule are shown on the next page. Which of the three products did you isolate? On the unfinished skeleton in the box at right, indicate your choice by drawing in any appropriate functional groups, <u>as well as all hydrogens</u>. Then,
 - Circle each group of equivalent H's;
 - Assign a ¹H chemical shift (δ) to each circled group, within 0.1 ppm;
 - Connect any pair of coupled, inequivalent groups of H's with a double-headed arrow, and then label that arrow with the corresponding coupling constant (J).
- (d) The ¹³C NMR spectrum of the isolated product showed 6 peaks, which appear in three distinct regions of the spectrum. I've labeled these regions A, B and C on the ¹³C spectrum on the next page. As you did above, re-draw your proposed contaminant structure below (though this time you can omit H's). Then, in each empty box, write the letter A, B, or C to indicate the region of the ¹³C NMR you would expect to find that carbon resonance. Fill all boxes.

¹H NMR Absorptions

Compound type	Chemical shift (ppm)
Alcohol	
R-O-H	1–5
H T	
R-Ċ-O	3.4–4.0
Aldehyde	
Q	
R ^{−C} [−] H	9–10
Alkane	0.9–2.0
RCH ₃	~0.9
R ₂ CH ₂	~1.3
R ₃ CH	~1.7
Alkene	
C=C sp ² C-H	4.5–6.0
∖ с−н	
C=C allylic sp ³ C-H	1.5–2.5
Alkyl halide	
H R-Ċ-F	4.0-4.5
H R-C-CI	3.0-4.0
H R-C-Br I	2.7–4.0
H R-C-I	2.2–4.0
Alkyne	
	-25

Compound type	Chemical shif
Amide	
Q	
R ^{∕C} N−H	7.5-8.5
Amine	
R-N-H	0.5-5.0
B-C-N-	2.3-3.0
Ť Î	2.0 0.0
Aromatic compound	
	6 5 9
Sp-C-H	0.5-6
C-H benzylic sp° C-H	1.5-2.5
2 should be shou	
C H	
\wedge sp^3 C-H on the α carbon	2.0–2.5
Carboxylic acid	
U	10-12
ROH	10 12
Ether H	
R-C-O-R	3.4-4.0

Carbon type	Structure	Chemical shift (ppm)
Alkyl, sp ³ hybridized C	—с–н	5–45
Alkyl, sp ³ hybridized C bonded to N, O, or X		30-80
Alkynyl, sp hybridized C	—C≡C—	65–100
Alkenyl, sp ² hybridized C)c=c	100–140
Aryl, sp ² hybridized C	<u> </u>	120–150
Carbonyl C)c=o	160-210

Exam 4 Chart of Reaction Conditions

California Standards Test

Chemistry Reference Sheet

Periodic Table of the Elements

18 84 2 He	Helium 4.00	10 Neon Neon	18	Ar Argon 39.95	36	K rypton	83.80	54 X	Xenon 131.29	86	Вn	Radon (222)				71	Lutetium 174.97	103	_	Lawrencium (262)
	17 7A	9 Fluorine	17	Chlorine 35.45	35	Br Bromine	79.90	-	lodine 126.90	85	At	Astatine (210)				02 V	Ytterbium 173.04	102	No	Nobelium (259)
	16 6A	8 Oxygen 16.00	16	Sulfur 32.07	34	Selenium	78.96	1 25	Tellurium 127.60	84	Ро	Polonium (209)				₆₉ E	Thulium 168.93	101	Md	Mendelevium (258)
	15 5A	7 Nitrogen	15	Phosphorus 30.97	33	AS Arsenic	74.92	51 Ch	Antimony 121.76	83	Bi	Bismuth 208.98				68 F	Erbium 167.26	100	Еm	Fermium (257)
	14 4A	6 Carbon	14	Silicon 28.09	32	Ge Germanium	72.61	0 20	Tin 118.71	82	Ъb	Lead 207.2				67 H	Holmium 164.93	66	Es	Einsteinium (252)
	13 3A	5 Boron 10.01	13	Aluminum 26.98	31	Ga llium	69.72	49	Indium 114.82	81	F	Thallium 204.38				99 D	Dysprosium 162.50	98	ັບ	Californium (251)
			-	12 2B	30	Z inc Zinc	65.39	89 Z	Cadmium 112.41	80	Hg	Mercury 200.59				95 1	Terbium 158.93	67	В¥	Berkelium (247)
				- 1 1 1 1	29	Copper	63.55	47 A	Silver 107.87	62	Au	Gold 196.97				9 ⁶⁴	Gadolinium 157.25	96	C	Curium (247)
				10	28	Nickel	58.69	46 0	Palladium 106.42	78	£	Platinum 195.08				е В Ш	Europium 151.96	95	Am	Americium (243)
		11 Atomic number Na Element symbol Sodium Element name	22:99 Average atomic mass*	6	27	Cobalt Cobalt	58.93	42 D	Rhodium 102.91	77	L	Iridium 192.22	109	MIT Meitnerium (268)		62 Sm	Samarium 150.36	94	Pu	Plutonium (244)
	ey			ο ο ο	26	Fe Iron	55.85	44 0	Ruthenium 101.07	76	Os	Osmium 190.23	108	HS Hassium (269)		D ⁶¹	Promethium (145)	93	dN	Neptunium (237)
	¥			7B	25	Mn Manganese	54.94	4 43	Technetium (98)	75	Re	Rhenium 186.21	107	Bohrium (264)		09 09	Neodymium 144.24	92		Uranium 238.03
				9 B 09	24	Chromium	52.00	42 M0	Molybdenum 95.94	74	≥	Tungsten 183.84	106	Seaborgium (266)		5 9 7	Praseodymium 140.91	91	Pa	Protactinium 231.04
				5 B	23	Vanadium	50.94	41 N5	Niobium 92.91	73	Та	Tantalum 180.95	105	Dubnium (262)		و 28 28	Cerium 140.12	90	Ч	Thorium 232.04
				4 4 B	22	Titanium	47.87	40 7	Zirconium 91.22	72	Ħ	Hafnium 178.49	104	Rutherfordium (261)			nen			
			c		21	Scandium	44.96	ଚ୍ଚ >	Yttrium 88.91	57	La	Lanthanum 138.91	68	Actinium (227)	intheses, th					
	2 2A	4 Beryllium	12	Magnesium 24.31	20	Calcium Calcium	40.08	88 0 8	Strontium 87.62	56	Ba	Barium 137.33	88	Radium (226)			er is in pare	he atomic n	isotope.	
- ⁺ - I	Hydrogen 1.01	3 Lithium	11	Sodium 22.99	19	Potassium	39.10	37 0 37	Rubidium 85.47	55	Cs	Cesium 132.91	87	Francium (223)			If this numb	it refers to t most stable		
Ŧ	-	N		3		4		1	ŝ		G)		\sim			*			

Copyright © 2008 California Department of Education