NAME \qquad

ID \#

ORGANIC CHEMISTRY I (2301)

9:30-10:20 am, August 7, 2013

Exam 4

There will be two ways that you can pick up your graded Exam 4:

- You can pick up your graded exam from Andy at office hours that he will hold on Monday, August $12^{\text {th }}$ (10:30-11:30 am) at Coffman Union Starbucks.
- Alternately, you will be able to pick up your graded exam from Chemistry department staff in 115 Smith beginning Monday, August $12^{\text {th }}$ at 1 PM. Exams that are not picked up within two weeks will be disposed of.

A periodic table, a chart of reaction conditions, and a table of typical NMR chemical shifts are attached to the back of this exam as aids. Otherwise, you are not permitted to use any other materials (including notes, books, or electronic devices of any kind).

Right now, write your name and student ID number at the top of this page. When the exam begins, please write your name at the top of the next page.

You may use pen or pencil. However, re-grades will be considered only for exams completed in pen.

Please write your answers in the boxes/spaces provided. If your answer is not in the appropriate space (say, for example, it's on the back of the page), draw us an arrow and/or note telling us where to look.

NAME

\qquad

Scoring:

1. \qquad / 12
2. \qquad / 37
3. \qquad / 15
4. \qquad / 36

Total Score: \qquad / 100

1. (12 pts) Each of the reactions below is drawn with two possible products. If one of the two products predominates, circle that preferred product. If the two products are produced equally, circle "BOTH". If neither product would result from the reaction, circle "NEITHER". Circle one answer only.

2. (15 pts) The free-radical chain mechanism of radical bromination has two propagation steps, which we have in lecture numbered (2) and (3):
(2) abstraction of an H from R-H by Br^{\bullet}; and
(3) reaction of $\mathrm{R} \cdot$ with Br_{2} to form $\mathrm{R}-\mathrm{Br}$.
a) Radical bromination of ethylenecyclopentane goes predominantly through a single radical intermediate $R \cdot$. What is the structure of the radical intermediate?

b) This radical intermediate then reacts with Br_{2} to give two different monobrominated products. What are the structures of these products?
$+\mathrm{Br}_{2}$

3. (31 pts) In the early 2000's, the National Institute for Occupational Safety and Health (NIOSH) began documenting lung disease in employees of companies that packaged microwave popcorn. NIOSH investigators narrowed the possible causative agent down to three substances: diacetyl, acetoin, and 2,3-butanediol, all of which are used in artificial butter flavoring and were inhaled in large amounts at that time by the employees. In this problem, you will identify one of the three compounds isolated from a popcorn packaging plant-in this case, not the inhaled toxin-based on its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.
a. How many resonances would you expect to see in the ${ }^{1} \mathrm{H}$ NMR of each of these additives? In other words, how many inequivalent sets of protons are there in each structure? Write your answers in the boxes on the right.

diacetyl

acetoin

2,3-butanediol

\# ${ }^{1} H$ NMR resonances expected
b. Each proton highlighted in the structures below could be split by neighboring protons. What kind of multiplet should each proton produce in a ${ }^{1} \mathrm{H}$ NMR spectrum? (Assume that there is no longrange coupling in these molecules.) Use the abbreviations on the chart on the right.

abbreviations for multiplets			
$s:$	singlet	$q:$	quartet
$d:$	doublet	$q n:$	quintet
$t:$	triplet	$s x:$	sextet

(Problem 6 continued on next page)
c. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra for the isolated molecule are shown on the next page. Is the molecule diacetyl, acetoin, or 2,3butanediol? On the unfinished skeleton in the box below, indicate your choice by drawing in the functional groups on the two center carbons, as well as all hydrogens. Then,

- Circle each group of equivalent H’s;
- Assign a ${ }^{1} \mathrm{H}$ chemical shift (δ) to each circled group, within 0.1 ppm ;

- Connect any pair of coupled, inequivalent groups of H's with a double-headed arrow, and then label that arrow with the corresponding coupling constant (J).

```
Your answer to (c):
```


d. There are four peaks in the ${ }^{13} \mathrm{C}$ NMR spectrum of our unknown molecule, labeled \mathbf{A}, \mathbf{B}, \mathbf{C}, and \mathbf{D}. Which carbons in your molecule do these peaks correspond to? As you did above in part (c), add functional groups to the two center carbons in the skeleton below to indicate whether you think the molecule is diacetyl, acetoin or 2,3-butanediol. Then, write a letter in each box to assign the ${ }^{13} \mathrm{C}$ NMR to the corresponding carbon atoms in the structure.

4. (36 pts) The spectra on pages 8-9 correspond to a pure solvent molecule, collected from the waste stream of a chemical plant. High-resolution mass spectrometry determined an exact mass of 101.0841 amu for the highest-mass (parent, \mathbf{M}^{+}) peak in the MS spectrum, which corresponds to a molecular formula of $\mathbf{C}_{5} \mathbf{H}_{11} \mathbf{N O}$.

To help you solve this problem, tables of typical IR frequencies and NMR chemical shifts are provided on pages 17-21 of the exam. Use these tables.
a. Based on the features above $2000 \mathrm{~cm}^{-1}$ in the IR spectrum, what functional groups would you expect the unknown molecule to have? Circle all answers that apply.

b. The IR peak at $1656 \mathrm{~cm}^{-1}$, according to the IR frequency table, could correspond to a carbonyl or an alkene group. Which group is consistent with the other spectra in this problem?

c. What is the structure of the molecule? In the box at right, draw your molecule's structure, including all hydrogens. Then, considering the ${ }^{1} \mathrm{H}$ NMR spectrum, circle each set of equivalent H's, and label each circle with its unique ${ }^{1} \mathrm{H}$ NMR chemical shift. (You do not need to label coupling constants J.)

```
your molecule
(C5}\mp@subsup{\textrm{H}}{11}{}\textrm{NO}
```

d. The mass spectrum shows two high-mass fragment peaks at $m / z=72$ and $m / z=57$. In each of the two boxes below, draw a mechanism (via "electron pushing") that shows how the radical cation of the parent molecule you drew in part (c) could yield these fragments.

fragment to yield mass 57:
e. In the mass spectrum, adjacent to the $m / z=44$ and 101 peaks, there are smaller peaks that are one mass unit higher (at $m / z=45$ and 102). In class, we said that $[\mathbf{M}+\mathbf{1}]^{+}$peaks could correspond to ions that had one ${ }^{13} \mathrm{C}$ atom in place of a ${ }^{12} \mathrm{C}$. Looking at the mass spectrum, is this a plausible explanation for the $m / z=45$ and 102 peaks? (Circle one each line.)

The peak at could or could not \quad| be due to $m / z=44$ ions |
| :---: |
| $m / z=45$ |\quad bearing one ${ }^{13} \mathrm{C}$.

The peak at $m / z=102$	could	could not	be due to $\mathrm{m} / \mathrm{z}=101$ ions bearing one ${ }^{13} \mathrm{C}$.

IR Spectrum:

${ }^{1} \mathrm{H}$ Spectrum (200 MHz):

${ }^{13} \mathrm{C}$ Spectrum (50 MHz):

Mass Spectrum:

Final Exam Chart of Reaction Conditions

${ }^{1} \mathrm{H}$ NMR Absorptions

IR Absorption Frequencies

Bond	Functional group	Wavenumber $\left(\mathbf{c m}^{-1}\right)$	Comment
O-H			
	- ROH	$3600-3200$	broad, strong
	- RCOOH	$3500-2500$	very broad, strong

Periodic Table of the Elements
California Standards Test

	$\begin{gathered} 1 \\ 1 \mathrm{~A} \end{gathered}$																	$\begin{aligned} & 18 \\ & 8 \mathrm{~A} \end{aligned}$
1		$\begin{gathered} 2 \\ 2 A \\ \hline \end{gathered}$						Key					$\begin{aligned} & 13 \\ & 3 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{array}{r} 14 \\ 4 \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 16 \\ & 6 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 7 \mathrm{~A} \\ & \hline \end{aligned}$	2 He Helium 4.00
2	$\begin{gathered} \hline 3 \\ \mathbf{L i} \mathbf{L i t h i u m} \\ 6.94 \\ \hline \end{gathered}$												5 \mathbf{B} Boron 10.81	$\underset{\substack{\text { Carbon } \\ 12.01}}{\mathbf{C}}$		$\begin{gathered} \hline 8 \\ \mathbf{O} \\ \text { Oxygen } \\ 16.00 \\ \hline \end{gathered}$	$\stackrel{\substack{9 \\ \text { Fluorine } \\ 19.00}}{\mathbf{F}}$	${ }^{10}$ Neon 20.18
3	11 Na Sodium 22.99		$\begin{gathered} 3 \\ 3 B \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 4 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ 5 B \\ \hline \end{gathered}$	22.99 6 6 6 B		rage atom 8	ic mass* 9 -8 B	10	$\begin{aligned} & 11 \\ & 1 B \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 2 \mathrm{~B} \\ & \hline \end{aligned}$		$\begin{gathered} 14 \\ \mathrm{Si} \\ \text { Silicon } \\ 28.09 \end{gathered}$		$\begin{array}{r} \hline 16 \\ \mathbf{S} \\ \text { Sulfur } \\ 32.07 \\ \hline \end{array}$	$\begin{gathered} 17 \\ \text { Cliorine } \\ \text { Cl } \\ \hline 5.45 \\ \hline \end{gathered}$	
4		$\begin{gathered} 20 \\ \text { Ca } \\ \text { Calcium } \\ 40.08 \\ \hline \end{gathered}$		$\begin{gathered} 22 \\ \begin{array}{c} \text { Titanium } \\ \text { Tint. } \end{array} \\ \hline 47.87 \end{gathered}$				$\begin{gathered} 26 \\ \text { Fe } \\ \text { Iron } \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ \text { Cobalt } \\ 58.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 28 \\ \mathbf{N i} \\ \begin{array}{c} \text { Nickel } \\ 58.69 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ \text { Copper } \\ 63.55 \end{gathered}$	$\begin{aligned} & 30 \\ & \text { Zn } \\ & \text { Znin } \\ & 65.39 \\ & \hline \end{aligned}$	$\begin{gathered} 31 \\ \text { Ga } \\ \text { Gallium } \\ 69.72 \\ \hline \end{gathered}$					$\begin{gathered} 36 \\ \begin{array}{c} \text { Krypton } \\ \text { Kr } \\ 83.80 \end{array} \end{gathered}$
5			$\begin{gathered} 39 \\ \mathbf{Y} \\ \text { Yttrium } \\ 88.91 \\ \hline \end{gathered}$										$\begin{gathered} \hline 49 \\ \text { In } \\ \text { Indium } \\ 114.82 \\ \hline \end{gathered}$				$\begin{array}{\|c\|} \hline 53 \\ \text { I } \\ \text { lodine } \\ 126.90 \\ \hline \end{array}$	$\begin{gathered} \hline 54 \\ \text { Xe } \\ \text { Xenon } \\ 131.29 \\ \hline \end{gathered}$
6	55 Cs Cesium 132.91								77 $\mathbf{I r}$ lidium lide.22 102	78 $\mathbf{P l}$ $\mathbf{P l a t i n u m ~}$ 195.08	79 Au Gold 196.97		81 TI $\begin{array}{c}\text { Thallium } \\ 204.38\end{array}$	$\begin{aligned} & \hline 82 \\ & \mathrm{~Pb} \\ & \text { Lead } \\ & 207.2 \\ & \hline \end{aligned}$				$\begin{aligned} & \begin{array}{l} 86 \\ \text { Rn } \\ \text { Radon } \\ (222) \end{array} \\ & \hline \end{aligned}$
7							${ }^{107}$ Bohrium (264)	108 Hs (269) Hassium (269)										
* If this number is in parentheses, then it refers to the atomic mass of the most stable isotope.					58 Ce Cerium 140.12					63 Eu Europium 151.96							70 $\mathbf{Y b}$ Y Yterbium 173.04	Li Lutetium 174.97 10
					90 Th Thorium 232.04	91 $\mathbf{P a}$ Protactinium 231.04$\|$	$\xrightarrow[\begin{array}{c}\text { Uranium } \\ 238.03\end{array}]{\substack{92 \\ \hline}}$	93 $\mathbf{N p}$ Neptunium (237)	94 $\mathbf{P u}$ Plutonium (244)	$\underset{\substack{\text { Americium } \\(243)}}{\substack{95 \\ \text { Am } \\ \hline}}$	$\begin{gathered} 96 \\ \text { Cm } \\ \substack{\text { Curium } \\ (247)} \\ \hline \end{gathered}$	97 Bk Berkelium (247)	$\underset{\substack{98 \\ \text { Californium } \\(251)}}{ }$	99 Esinteinium (252)	$\begin{gathered} 100 \\ \text { Fm } \\ \text { Fermium } \\ (257) \\ \hline \end{gathered}$	$\substack{101 \\ \text { Md } \\ \text { Mendelevium } \\ (258)}$	$\begin{gathered} 102 \\ \text { No } \\ \begin{array}{c} \text { Nobelium } \\ (259) \end{array} \\ \hline \end{gathered}$	$\left.\begin{array}{\|c\|}\hline 103 \\ \mathbf{L r} \\ \text { Lawrencium } \\ \text { (262) }\end{array}\right]$

