|--|

ORGANIC CHEMISTRY I (2301)

9:30 - 10:20 am, August 7, 2013

Exam 4

There will be two ways that you can pick up your graded Exam 4:

- You can pick up your graded exam from Andy at office hours that he will hold on Monday, August 12th (10:30-11:30 am) at Coffman Union Starbucks.
- Alternately, you will be able to pick up your graded exam from Chemistry department staff in 115 Smith beginning Monday, August 12th at 1 PM. Exams that are not picked up within two weeks will be disposed of.

A periodic table, a chart of reaction conditions, and a table of typical NMR chemical shifts are attached to the back of this exam as aids. Otherwise, you are not permitted to use any other materials (including notes, books, or electronic devices of any kind).

Right now, write your name and student ID number at the top of this page. When the exam begins, please write your name at the top of the next page.

You may use pen or pencil. However, re-grades will be considered only for exams completed in pen.

Please write your answers in the boxes/spaces provided. If your answer is not in the appropriate space (say, for example, it's on the back of the page), draw us an arrow and/or note telling us where to look.

1. (12 pts) Each of the reactions below is drawn with two possible products. If one of the two products predominates, circle that preferred product. If the two products are produced <u>equally</u>, circle "BOTH". If neither product would result from the reaction, circle "NEITHER". **Circle one answer only.**

2. (15 pts) The free-radical chain mechanism of radical bromination has two propagation steps, which we have in lecture numbered (2) and (3):

abstraction of an H from R-H by Br•; and

3 re

reaction of R• with Br_2 to form R-Br.

a) Radical bromination of ethylenecyclopentane goes predominantly through a single radical intermediate R•. What is the structure of the radical intermediate?

- 3. (31 pts) In the early 2000's, the National Institute for Occupational Safety and Health (NIOSH) began documenting lung disease in employees of companies that packaged microwave popcorn. NIOSH investigators narrowed the possible causative agent down to three substances: diacetyl, acetoin, and 2,3-butanediol, all of which are used in artificial butter flavoring and were inhaled in large amounts at that time by the employees. In this problem, you will identify one of the three compounds isolated from a popcorn packaging plant—in this case, not the inhaled toxin—based on its ¹H and ¹³C NMR spectra.
 - a. How many resonances would you expect to see in the ¹H NMR of each of these additives? In other words, how many inequivalent sets of protons are there in each structure? Write your answers in the boxes on the right.

#¹H NMR resonances expected

b. Each proton highlighted in the structures below could be split by neighboring protons. What kind of multiplet should each proton produce in a ¹H NMR spectrum? (Assume that there is no long-range coupling in these molecules.) Use the abbreviations on the chart on the right.

abbreviations for multiplets										
s:	singlet	q:	quartet							
d:	doublet	qn:	quintet							
t:	triplet	sx:	sextet							

(Problem 6 continued on next page)

- c. ¹H and ¹³C spectra for the isolated molecule are shown on the next page. Is the molecule diacetyl, acetoin, or 2,3-butanediol? On the unfinished skeleton in the box below, indicate your choice by drawing in the functional groups on the two center carbons, <u>as well as all hydrogens</u>. Then,
 - Circle each group of equivalent H's;
 - Assign a ¹H chemical shift (δ) to each circled group, within 0.1 ppm;

• Connect any pair of coupled, inequivalent groups of H's with a double-headed arrow, and then label that arrow with the corresponding coupling constant (*J*).

d. There are four peaks in the ¹³C NMR spectrum of our unknown molecule, labeled **A**, **B**, **C**, and **D**. Which carbons in your molecule do these peaks correspond to? As you did above in part (c), add functional groups to the two center carbons in the skeleton below to indicate whether you think the molecule is diacetyl, acetoin or 2,3-butanediol. Then, write a letter in each box to assign the ¹³C NMR to the corresponding carbon atoms in the structure.

4. (36 pts) The spectra on pages 8-9 correspond to a pure solvent molecule, collected from the waste stream of a chemical plant. High-resolution mass spectrometry determined an exact mass of 101.0841 amu for the highest-mass (parent, M^+) peak in the MS spectrum, which corresponds to a molecular formula of C₅H₁₁NO.

To help you solve this problem, tables of typical IR frequencies and NMR chemical shifts are provided on pages 17-21 of the exam. **Use these tables.**

a. Based on the features *above 2000* cm^{-1} in the IR spectrum, what functional groups would you expect the unknown molecule to have? **Circle all answers that apply.**

b. The IR peak at 1656 cm⁻¹, according to the IR frequency table, could correspond to a carbonyl or an alkene group. Which group is consistent with the other spectra in this problem?

c. What is the structure of the molecule? In the box at right, draw your molecule's structure, including all hydrogens. Then, considering the ¹H NMR spectrum, circle each set of equivalent H's, and label each circle with its unique ¹H NMR chemical shift. (You do not need to label coupling constants J.)

your molecule (C ₅ H ₁₁ NO)		

d. The mass spectrum shows two high-mass fragment peaks at m/z = 72 and m/z = 57. In each of the two boxes below, draw a mechanism (via "electron pushing") that shows how the radical cation of the parent molecule you drew in part (c) could yield these fragments.

fragment to yield mas 72 :	fragment to yield mass 57 :

e. In the mass spectrum, adjacent to the m/z = 44 and 101 peaks, there are smaller peaks that are one mass unit higher (at m/z = 45 and 102). In class, we said that $[\mathbf{M+1}]^+$ peaks could correspond to ions that had one ¹³C atom in place of a ¹²C. Looking at the mass spectrum, is this a plausible explanation for the m/z = 45 and 102 peaks? (Circle one each line.)

The peak at <i>m</i> / <i>z</i> = 45	could	or	could not	be due to $m/z = 44$ ions bearing one ¹³ C.					
The peak at <i>m/z</i> = 102	could	or	could not	be due to $m/z = 101$ ions bearing one ¹³ C.					

IR Spectrum:

¹H Spectrum (200 MHz):

¹³C Spectrum (50 MHz):

Final Exam Chart of Reaction Conditions

¹H NMR Absorptions

Compound type	Chemical shift (ppm)
Alcohol	
R-O-H	1–5
H T	
R-Ċ-O	3.4–4.0
Aldehyde	
Q	
R ^{−C} [−] H	9–10
Alkane	0.9–2.0
RCH ₃	~0.9
R ₂ CH ₂	~1.3
R ₃ CH	~1.7
Alkene	
C=C sp ² C-H	4.5–6.0
∖ с−н	
C=C allylic sp ³ C-H	1.5–2.5
Alkyl halide	
H R-Ċ-F	4.0-4.5
H R-C-CI	3.0-4.0
H R-C-Br I	2.7–4.0
H R-C-I	2.2–4.0
Alkyne	
	-25

Compound type	Chemical shif
Amide	
Q	
R ^{∕C} N−H	7.5-8.5
Amine	
R-N-H	0.5-5.0
B-C-N-	2.3-3.0
Ť Î	2.0 0.0
Aromatic compound	
	6 5 9
Sp-C-H	0.5-6
C-H benzylic sp° C-H	1.5-2.5
2 should be shou	
C H	
\wedge sp^3 C-H on the α carbon	2.0–2.5
Carboxylic acid	
U	10-12
ROH	10 12
Ether H	
R-C-O-R	3.4-4.0

Carbon type	Structure	Chemical shift (ppm)
Alkyl, sp ³ hybridized C	—с–н	5–45
Alkyl, sp ³ hybridized C bonded to N, O, or X		30-80
Alkynyl, sp hybridized C	—C≡C—	65–100
Alkenyl, sp ² hybridized C)c=c	100–140
Aryl, sp ² hybridized C	<u> </u>	120–150
Carbonyl C)c=o	160-210

IR Absorption Frequencies

Bond	Functional group	Wavenumber (cm ⁻¹)	Comment
0-н			
	• ROH	3600–3200	broad, strong
	RCOOH	3500-2500	very broad, strong
N – H			
	BNH ₂	3500-3300	two peaks
	• R ₂ NH	3500-3300	one peak
	• RCONH ₂ , RCONHR	3400–3200	one or two peaks; N – H bending also observed at 1640 cm ⁻¹
С-Н			
	• C _{sp} – H	3300	sharp, often strong
	• C _{sp²} -H	3150-3000	medium
	• C _{sp³} -H	3000–2850	strong
	• C _{sp²} -H of RCHO	2830–2700	one or two peaks
C≡C		2250	medium
C≡N		2250	medium
C=0			strong
	RCOCI	1800	
	 (RCO)₂O 	1800, 1760	two peaks
	RCOOR	1745–1735	increasing \widetilde{v} with decreasing ring size
	RCHO	1730	
	• R ₂ CO	1715	increasing ữ with decreasing ring size
	 R₂CO, conjugated 	1680	
	RCOOH	1710	
	 RCONH₂, RCONHR, RCONR₂ 	1680–1630	increasing ⊽ with decreasing ring size
C=C			
	Alkene	1650	medium
	Arene	1600, 1500	medium
C=N		1650	medium

California Standards Test

Chemistry Reference Sheet

Periodic Table of the Elements

18 88 2 He	Helium 4.00	10 Neon Neon	18	Ar Argon 39.95	36	K rypton	83.80	54 X	Xenon 131.29	86	Вn	Radon (222)				71	Lutetium 174.97	103	_	Lawrencium (262)
	17 7A	9 Fluorine	17	Chlorine 35.45	35	Br Bromine	79.90	-	lodine 126.90	85	At	Astatine (210)				02 V	Ytterbium 173.04	102	No	Nobelium (259)
	16 6A	8 Oxygen 16.00	16	Sulfur 32.07	34	Selenium	78.96	1 25	Tellurium 127.60	84	Ро	Polonium (209)				₆₉ E	Thulium 168.93	101	Md	Mendelevium (258)
	15 5A	7 Nitrogen	15	Phosphorus 30.97	33	AS Arsenic	74.92	51 Ch	Antimony 121.76	83	Bi	Bismuth 208.98				68 F	Erbium 167.26	100	Еm	Fermium (257)
	14 4A	6 Carbon	14	Silicon 28.09	32	Ge Germanium	72.61	0 20	Tin 118.71	82	Ъb	Lead 207.2				67 H	Holmium 164.93	66	Es	Einsteinium (252)
	13 3A	5 Boron 10.01	13	Aluminum 26.98	31	Ga llium	69.72	49	Indium 114.82	81	F	Thallium 204.38				99 D	Dysprosium 162.50	98	ັບ	Californium (251)
			-	12 2B	30	Z inc Zinc	65.39	89 Z	Cadmium 112.41	80	Hg	Mercury 200.59				95 1	Terbium 158.93	67	В¥	Berkelium (247)
		e e	e nic mass*	- 1 1 1 1	29	Copper	63.55	47 A	Silver 107.87	62	Au	Gold 196.97				9 ⁶⁴	Gadolinium 157.25	96	C	Curium (247)
				10	28	Nickel	58.69	46 0	Palladium 106.42	78	£	Platinum 195.08				е В Ш	Europium 151.96	95	Am	Americium (243)
				6	27	Cobalt Cobalt	58.93	42 D	Rhodium 102.91	77	L	Iridium 192.22	109	MIT Meitnerium (268)		62 Sm	Samarium 150.36	94	Pu	Plutonium (244)
	ey	mic numb ment sym	erade atom	ο ο ο	26	Fe Iron	55.85	44 0	Ruthenium 101.07	76	Os	Osmium 190.23	108	HS Hassium (269)		D ⁶¹	Promethium (145)	93	dN	Neptunium (237)
	¥	Ato		7B	25	Mn Manganese	54.94	4 43	Technetium (98)	75	Re	Rhenium 186.21	107	Bohrium (264)		09 09	Neodymium 144.24	92		Uranium 238.03
		-11- Sodiur	Sodiur 22.95	9 B 09	24	Chromium	52.00	42 M0	Molybdenum 95.94	74	≥	Tungsten 183.84	106	Seaborgium (266)		5 9 7	Praseodymium 140.91	91	Pa	Protactinium 231.04
				5 B	23	Vanadium	50.94	41 N5	Niobium 92.91	73	Та	Tantalum 180.95	105	Dubnium (262)		و 28 28	Cerium 140.12	90	Ч	Thorium 232.04
			4 4 B	22	Titanium	47.87	40 7	Zirconium 91.22	72	Ħ	Hafnium 178.49	104	Rutherfordium (261)			nen				
					21	Scandium	44.96	ଚ୍ଚ >	Yttrium 88.91	57	La	Lanthanum 138.91	68	Actinium (227)	entheses, the nass of the		nass of the			
	2 2A	4 Beryllium	12	Magnesium 24.31	20	Calcium Calcium	40.08	88 0	Strontium 87.62	56	Ba	Barium 137.33	88	Radium (226)			er is in pare	he atomic n	isotope.	
- ⁺ - I	Hydrogen 1.01	3 Lithium	11	Sodium 22.99	19	Potassium	39.10	37 0 37	Rubidium 85.47	55	Cs	Cesium 132.91	87	Francium (223)			If this numb	it refers to t most stable		
Ŧ	-	N		3		4		1	ŝ		G)		\sim			*			

Copyright © 2008 California Department of Education