NAME \qquad

ID \#

HONORS ELEMENTARY ORGANIC CHEMISTRY I (2331H)

10:30 am - 12:30 pm, December 16, 2013

Final Exam

There will be two ways that you can pick up your graded final exam:

- You can pick up your graded exam from Andy at office hours that he will hold on Thursday, December 19 ${ }^{\text {th }}$ (9:30-11 am) in Coffman Union Starbucks.
- Alternately, you will be able to pick up your exam in private from Chemistry department staff in 115 Smith beginning Friday, December $20^{\text {th }}$.

A periodic table, a chart of reaction conditions, and tables of typical NMR chemical shifts, coupling constants, IR stretching frequencies, and isotopic abundances are attached to the back of this exam as aides. Otherwise, you are not permitted to use any other materials (including notes, books, or electronic devices of any kind).

When the exam begins, please write your name at the top of the next page.
You may use pen or pencil. However, re-grades will be considered only for exams completed in pen.

Please write your answers in the boxes/spaces provided. If your answer is not in the appropriate space (say, for example, it's on the back of the page), draw us an arrow and/or note telling us where to look.

Scoring:

1. \qquad / 14
2. \qquad / 16
3. \qquad / 18
4. \qquad / 15
5. \qquad / 4
6. \qquad / 34
7. \qquad / 22
8. \qquad / 12
9. \qquad / 24
10. \qquad / 41

Total Score: \qquad / 200

1. (14 pts) For each of the pairs of acids (or bases) below,

- Draw the conjugate base (or acid).
- Circle whether you think the first acid (or base) is more or less acidic (or basic) than the second.

2. (18 pts) For ethyl formate (drawn at right), in the boxes provided:

- Draw all significant resonance structures. In each structure, draw all atoms, bonds, lone pairs of electrons, and formal
 charges. Then, circle which resonance structure you think is the most significant, and which is the least. Circle only one MOST and one LEAST.
- Draw a Lewis wedge/dashed-bond structure that illustrates the most stable threedimensional conformation of the molecule. Draw all atoms, bonds, and charges, but omit lone pairs.
- In the boxes provided, write the hybridization state on any atom heavier than hydrogen.

3. (4 pts) Each of the alkenes on the right hydrogenates-adds H_{2} exothermically (with $\Delta H_{\text {hyd }}<0$) to form butane. Which one hydrogenates the most exothermically?

 (Circle one molecule.)
4. (22 pts) In the presence of a strong base, each of the bromo-tert-butylcyclohexanes below undergoes E2 elimination to produce an alkene. However, one of the two reacts much faster than the other. In this problem, you will explain why.

(a) Each of the starting cyclohexanes has two equilibrating chair conformers; for each starting material, one chair is much more stable than the other. In the boxes below, draw the more stable conformers for each starting material. Feel free to omit the ring hydrogens, but draw all non-hydrogen substituents.
More stable chair conformer for cis isomer

More stable chair conformer for trans isomer
(b) Of the conformers you drew above, only one will react with KOtBu via E 2 . In the box on the right, re-draw the one stable conformer that will undergo E2. Then, "push electrons" (using curved arrows) to show how one of the two products would be generated from starting material and the $t \mathrm{BuO}^{-}$base. (You don't need to draw the product, just push electrons.)

Mechanism for E2-reactive conformer
(c) Are the two products chiral? For each structure, circle whether you think the molecule is chiral or achiral. Then, label each chiral center with its appropriate Cahn-Ingold-Prelog designation $[(R)$ or (S)]. Make it clear which atom in the drawing you are labeling.
(d) What is the stereochemical relationship between the two products? (Circle one answer.) Are they

CHIRAL
or
ACHIRAL ? ACHIRAL ?
5. (12 pts) Each of the reactions below is drawn with two possible products. If one of the two products predominates, circle that preferred product. If the two products are produced equally, circle "BOTH". If neither product would result from the reaction, circle "NEITHER". Circle one answer only.

6. (16 pts) Each of the reactions on the next page is drawn with two possible reaction conditions. If only one of the two reaction conditions would generate the given molecule as the major product, circle those conditions. If both sets of conditions would accomplish the reaction, circle "BOTH". If neither set of reaction conditions would succeed, circle "NEITHER". Circle one answer only.

7. (15 pts) For each of the reactions on the following pages, fill in the empty box corresponding to the major product. Wherever appropriate, illustrate stereochemistry in your drawings (using wedge and dashed bonds). If multiple enantiomers or diastereomers are produced, indicate this in the answer box (e.g., by writing "+ enantiomer", etc.)

1. $\mathrm{BH}_{3} \bullet \mathrm{THF}$

2. $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{OH}$

3. (34 pts) Draw a mechanism (using "electron pushing") for each of the reactions shown below. Draw each mechanistic step explicitly; don't cheat by combining multiple processes in a single step. Use only the molecules shown in the problem; don’t invoke generic species. (E.g., don't use "H-A" as a generic acid.)

Mechanism:

Mechanism:

One of the intermediates you drew in this mechanism could be stabilized by a 1,2hydride shift. What alcohol product would be generated if this shift occurred?

9. (24 pts) For each set of starting materials and products shown below, propose a multistep synthesis. In addition to the molecules shown, you can use any reagents and reactions we've learned about in class. You might discover multiple answers to this problem; draw only your best (one) synthetic route. Feel free to draw an incomplete route-we will give you partial credit where we can.

Multistep synthesis:

Multistep synthesis:
10. (41 pts) Radical chlorination of ethyl acetate (the starting material on the right) gives predominantly one product. This product was isolated and characterized by NMR and IR
 spectroscopy and mass spectrometry; the spectra of this product are shown on the following pages. High-resolution mass spectrometry determined an exact mass of 122.0135 amu for one of the highest-mass (parent, \mathbf{M}^{+}) peaks in the MS spectrum, which corresponds to a molecular formula of $\mathbf{C}_{4} \mathbf{H}_{7} \mathrm{ClO}_{2}$.
(a) Based on the features in the IR spectrum below, what functional groups would you expect the unknown molecule to have? Circle all answers that apply.

IR Spectrum:

(b) What part of this IR spectrum is the "fingerprint region"? In the box below, color/shade in the range of frequencies that correspond to the "fingerprint region".

(c) Compared to NMR, does IR require
(d) Compared to mass spec, does IR require MORE or LESS material?
(e) What is the structure of the product? In the box below, draw the molecule's structure, including all hydrogens. Then, considering the ${ }^{1} \mathrm{H}$ NMR spectrum below,

- Circle each group of equivalent H’s;
- Assign a ${ }^{1} \mathrm{H}$ chemical shift (δ) to each circled group, within 0.1 ppm ;
- Connect any pair of coupled, inequivalent groups of H’s with a double-headed arrow, and then label that arrow with the corresponding the product coupling constant (J).
$\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{ClO}_{2}\right)$

Format for answer to (c):

${ }^{1} \mathrm{H}$ NMR Spectrum:

Mass Spectrum:

(f) Some of the peaks in the electron-ionization (EI) mass spectrum, including the parent peak, are accompanied by a smaller peak 2 amu higher. (In other words, some peaks with mass m are accompanied by another peak, about $1 / 3$ as tall, with mass $m+2$.) Why? Please be brief; you can probably answer this question in less than 10 words.

Explain why:
(g) The parent mass peak at $m / z=122$ corresponds to a radical cation $\left(\mathbf{M}^{++}\right)$ that is generated by removing one electron from the original, neutral molecule M. In the box on the right, draw \mathbf{M}^{+}; re-draw the structure you drew in part (e), but specifically indicate which electron is removed by drawing the molecule with one less electron. Feel free to omit the hydrogens you drew in part (e).

```
M+
(C44}\mp@subsup{\textrm{H}}{7}{}\mp@subsup{\textrm{ClO}}{2}{+}
```

(h) The parent ion fragments to form a daughter ion with $\mathrm{m} / \mathrm{z}=77$. What is the structure of this daughter ion? You do not need to do electron pushing to answer this part-just draw the cation.
fragment cation with $m / z=77$
(i) The parent ion also fragments to form a daughter ion with mass 73 amu (not observed), which then fragments further to give an ion with $\mathrm{m} / \mathrm{z}=29$. In the box below, draw a mechanism (using "arrow pushing") that shows these two sequential fragmentation steps, starting with your answer to part (g).

[^0]Summary of IR Stretching Frequencies

Frequency (cm^{-1})	Functional Group	Comments
3300	alcohol $\quad \mathrm{O}-\mathrm{H}$	always broad
	amine, amide $\quad \mathrm{N}-\mathrm{H}$	may be broad, sharp, or broad with spikes
	alkyne $\quad \equiv \mathrm{C}-\mathrm{H}$	always sharp, usually strong
3000	alkane $\quad-\mathrm{C}-\mathrm{H}$	just below $3000 \mathrm{~cm}^{-1}$
	alkene	just above $3000 \mathrm{~cm}^{-1}$
	acid $\quad \mathrm{O}-\mathrm{H}$	very broad
2200	$\begin{array}{lr} \text { alkyne } & -\mathrm{C} \equiv \mathrm{C}- \\ \text { nitrile } & -\mathrm{C} \equiv \mathrm{~N} \end{array}$	just below $2200 \mathrm{~cm}^{-1}$ just above $2200 \mathrm{~cm}^{-1}$
$\begin{gathered} 1710 \\ \text { (very strong) } \end{gathered}$	carbonyl $\backslash \mathrm{C}=\mathrm{O}$	ketones, aldehydes, acids esters higher, about $1735 \mathrm{~cm}^{-1}$ conjugation lowers frequency amides lower, about $1650 \mathrm{~cm}^{-1}$
1660	alkene	conjugation lowers frequency aromatic $\mathrm{C}=\mathrm{C}$ about $1600 \mathrm{~cm}^{-1}$
	imine $\quad \lambda \mathrm{C}=\mathrm{N}^{\prime}$	stronger than $\mathrm{C}=\mathrm{C}$
	amide $\quad \backslash \mathrm{C}=\mathrm{O}$	stronger than $\mathrm{C}=\mathrm{C}$ (see above)

Ethers, esters, and alcohols also show C-O stretching between 1000 and $1200 \mathrm{~cm}^{-1}$.

Isotopic Composition of Some Common Elements

Element	\mathbf{M}^{+}		$\mathbf{M + 1}$	$\mathbf{M + 2}$		
hydrogen	${ }^{1} \mathrm{H}$	100.0%				
carbon	${ }^{12} \mathrm{C}$	98.9%	${ }^{13} \mathrm{C}$	1.1%		
nitrogen	${ }^{14} \mathrm{~N}$	99.6%	${ }^{15} \mathrm{~N}$	0.4%		
oxygen	${ }^{16} \mathrm{O}$	99.8%			${ }^{18} \mathrm{O}$	0.2%
sulfur	${ }^{32} \mathrm{~S}$	95.0%	0.8%	${ }^{34} \mathrm{~S}$	4.2%	
chlorine	${ }^{35} \mathrm{Cl}$	75.5%			${ }^{37} \mathrm{Cl}$	24.5%
bromine	${ }^{79} \mathrm{Br}$	50.5%	Br	49.5%		
iodine	${ }^{127} \mathrm{I}$	100.0%				

APPENDIX 1A NMR: Proton Chemical Shifts

[^1]
APPENDIX 1A NMR: Proton Chemical Shifts

[^2]
$\mathrm{a}=$ axial, $\mathrm{e}=$ equatorial

APPENDIX 1C NMR: ${ }^{13} \mathrm{C}$ Chemical Shifts in Organic Compounds*:

ppm (TMS) 22021020019018017016015014013012011010090

[^3]Periodic Table of the Elements
California Standards Test

	$\begin{gathered} 1 \\ 1 \mathrm{~A} \end{gathered}$																	$\begin{aligned} & 18 \\ & 8 \mathrm{~A} \end{aligned}$
1		$\begin{gathered} 2 \\ 2 A \\ \hline \end{gathered}$						Key					$\begin{aligned} & 13 \\ & 3 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{array}{r} 14 \\ 4 \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 16 \\ & 6 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 7 \mathrm{~A} \\ & \hline \end{aligned}$	2 He Helium 4.00
2	$\begin{gathered} \hline 3 \\ \mathbf{L i} \mathbf{L i t h i u m} \\ 6.94 \\ \hline \end{gathered}$												5 \mathbf{B} Boron 10.81	$\underset{\substack{\text { Carbon } \\ 12.01}}{\mathbf{C}}$		$\begin{gathered} \hline 8 \\ \mathbf{O} \\ \text { Oxygen } \\ 16.00 \\ \hline \end{gathered}$	$\stackrel{\substack{9 \\ \text { Fluorine } \\ 19.00}}{\mathbf{F}}$	${ }^{10}$ Neon 20.18
3	11 Na Sodium 22.99		$\begin{gathered} 3 \\ 3 B \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 4 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ 5 B \\ \hline \end{gathered}$	22.99 6 6 6 B		rage atom 8	ic mass* 9 -8 B	10	$\begin{aligned} & 11 \\ & 1 B \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 2 \mathrm{~B} \\ & \hline \end{aligned}$		$\begin{gathered} 14 \\ \mathrm{Si} \\ \text { Silicon } \\ 28.09 \end{gathered}$		$\begin{array}{r} \hline 16 \\ \mathbf{S} \\ \text { Sulfur } \\ 32.07 \\ \hline \end{array}$	$\begin{gathered} 17 \\ \text { Cliorine } \\ \text { Cl } \\ \hline 5.45 \\ \hline \end{gathered}$	
4		$\begin{gathered} 20 \\ \text { Ca } \\ \text { Calcium } \\ 40.08 \\ \hline \end{gathered}$		$\begin{gathered} 22 \\ \begin{array}{c} \text { Titanium } \\ \text { Tint. } \end{array} \\ \hline 47.87 \end{gathered}$				$\begin{gathered} 26 \\ \text { Fe } \\ \text { Iron } \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ \text { Cobalt } \\ 58.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 28 \\ \mathbf{N i} \\ \begin{array}{c} \text { Nickel } \\ 58.69 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ \text { Copper } \\ 63.55 \end{gathered}$	$\begin{aligned} & 30 \\ & \text { Zn } \\ & \text { Znin } \\ & 65.39 \\ & \hline \end{aligned}$	$\begin{gathered} 31 \\ \text { Ga } \\ \text { Gallium } \\ 69.72 \\ \hline \end{gathered}$					$\begin{gathered} 36 \\ \begin{array}{c} \text { Krypton } \\ \text { Kr } \\ 83.80 \end{array} \end{gathered}$
5			$\begin{gathered} 39 \\ \mathbf{Y} \\ \text { Yttrium } \\ 88.91 \\ \hline \end{gathered}$										$\begin{gathered} \hline 49 \\ \text { In } \\ \text { Indium } \\ 114.82 \\ \hline \end{gathered}$				$\begin{array}{\|c\|} \hline 53 \\ \text { I } \\ \text { lodine } \\ 126.90 \\ \hline \end{array}$	$\begin{gathered} \hline 54 \\ \text { Xe } \\ \text { Xenon } \\ 131.29 \\ \hline \end{gathered}$
6	55 Cs Cesium 132.91								77 $\mathbf{I r}$ lidium lide.22 102	78 $\mathbf{P l}$ $\mathbf{P l a t i n u m ~}$ 195.08	79 Au Gold 196.97		81 TI $\begin{array}{c}\text { Thallium } \\ 204.38\end{array}$	$\begin{aligned} & \hline 82 \\ & \mathrm{~Pb} \\ & \text { Lead } \\ & 207.2 \\ & \hline \end{aligned}$				$\begin{aligned} & \begin{array}{l} 86 \\ \text { Rn } \\ \text { Radon } \\ (222) \end{array} \\ & \hline \end{aligned}$
7							${ }^{107}$ Bohrium (264)	108 Hs (269) Hassium (269)										
* If this number is in parentheses, then it refers to the atomic mass of the most stable isotope.					58 Ce Cerium 140.12					63 Eu Europium 151.96							70 $\mathbf{Y b}$ Y Yterbium 173.04	Li Lutetium 174.97 10
					90 Th Thorium 232.04	91 $\mathbf{P a}$ Protactinium 231.04$\|$	$\xrightarrow[\begin{array}{c}\text { Uranium } \\ 238.03\end{array}]{\substack{92 \\ \hline}}$	93 $\mathbf{N p}$ Neptunium (237)	94 $\mathbf{P u}$ Plutonium (244)	$\underset{\substack{\text { Americium } \\(243)}}{\substack{95 \\ \text { Am } \\ \hline}}$	$\begin{gathered} 96 \\ \text { Cm } \\ \substack{\text { Curium } \\ (247)} \\ \hline \end{gathered}$	97 Bk Berkelium (247)	$\underset{\substack{98 \\ \text { Californium } \\(251)}}{ }$	99 Esinteinium (252)	$\begin{gathered} 100 \\ \text { Fm } \\ \text { Fermium } \\ (257) \\ \hline \end{gathered}$	$\substack{101 \\ \text { Md } \\ \text { Mendelevium } \\ (258)}$	$\begin{gathered} 102 \\ \text { No } \\ \begin{array}{c} \text { Nobelium } \\ (259) \end{array} \\ \hline \end{gathered}$	$\left.\begin{array}{\|c\|}\hline 103 \\ \mathbf{L r} \\ \text { Lawrencium } \\ \text { (262) }\end{array}\right]$

[^0]: Mechanism that explains $m / z=29$ peak

[^1]: ${ }^{a}$ Normally, absorptions for the functional groups indicated will be found within the range shown in black. Occasionally, a functional group will absorb outside this range. Approximate limits are indicated by extended outlines.
 ${ }^{\mathrm{b}}$ Absorption positions of these groups are concentration-dependent and are shifted to lower δ values in more dilute solutions.

[^2]: ${ }^{a}$ Normally, absorptions for the functional groups indicated will be found within the range shown in black. Occasionally, a functional group will absorb outside this range. Approximate limits are indicated by extended outlines.
 ${ }^{\mathrm{b}}$ Absorption positions of these groups are concentration-dependent and are shifted to lower δ values in more dilute solutions.

[^3]: *Relative to internal tetramethylsilane.
 Copyright 1998 by Bruker Analytik GmbH. Used by permission.

