NAME

ID \#

ORGANIC CHEMISTRY I (2301)

9:30-11:30 am, August 4, 2011

Final Exam

Form A

There will be two ways that you can pick up your graded final exam:

- You can pick up your graded exam from Andy at office hours that he will hold on Friday, August $5^{\text {th }}$ (9:30-10:30 am) at Coffman Union Starbucks.
- Alternately, you will be able to pick up your graded exam from Chemistry department staff in 115 Smith beginning Friday, August $5^{\text {th }}$ at noon. Exams that are not picked up within two weeks will be disposed of.

A periodic table, a chart of reaction conditions, and tables of typical NMR chemical shifts, coupling constants, IR stretching frequencies, and isotopic abundances are attached to the back of this exam as aides. Otherwise, you are not permitted to use any other materials (including notes, books, or electronic devices of any kind).

Right now, write your name at the top of this page, and fill in the bubbles on the multiple-choice answer sheet for your name and your 7-digit student ID number. When the exam begins, also write your name at the top of page 5 .

You may use pen or pencil. However, re-grades will be considered only for exams completed in pen.
Please write your answers in the bubble sheet for the multiple choice portion of the exam, and in the boxes/spaces provided for the written portion. If your answer is not in the appropriate space in the written portion (say, for example, it's on the back of the page),
 draw us an arrow and/or note telling us where to look.

Multiple-Choice Problems

Please answer these problems on the bubble sheet.
(2 pts each) For ethylformamidinium cation, drawn at right:

- For each atom marked "hybridization", indicate whether the atom is hybridized(a) $s p$, (b) $s p^{2}$, (c) $s p^{3}$, or (d) none of these.
- For each bond angle marked "angle", indicate whether the angle is closest to (a) 109.5°, (b) 120°, or (c) 180°.

7. (3 pts) Of the resonance structures on the right, which contributes least to the overall electronics in ethylformamidinium cation?
a.

c.

8. (3 pts) Which of the structures below represents the most stable 3-dimensional conformation of ethylformamidinium cation?
a.

b.

c.

d.

(2 pts each) Does the proton-transfer equilibrium for each acid-base pair shown below favor products, or starting materials? (Is the acid strong enough to protonate the base?)

Does the equilibrium favor:
9.

a. products, or
b. starting materials?
10.

a. products, or
b. starting materials?
11.

a. products, or
b. starting materials?
(2 pts each) For each of the molecules drawn on the right:

- For each atom marked "chirality", indicate whether the atom would be labeled as (a) an (R)-chiral center, (b) an (S)-chiral center, or (c) not a chiral center, according to the Cahn-Ingold-Prelog classification system.
- Indicate whether the molecule would

14. Is this molecule
a. chiral, or
b. achiral?
15. (2 pts) Are the methyl-group hydrogens in the structure on the right
a. enantiotopic,
b. diastereotopic, or
c. neither of the above?

16. Is this molecule
a. chiral, or
b. achiral?
(4 pts each) Each of the reactions below is drawn with two possible reaction conditions. If only one of the two reaction conditions would generate the given molecule as the major product, answer with the corresponding letter. If both sets of conditions would accomplish the reaction, answer (c) "BOTH". If neither set of reaction conditions would succeed, answer (d) "NEITHER".
17.

19.
20.

21.

a.
$\mathrm{Na}, \mathrm{NH}_{3}$
b.
Pt, H_{2}
d.
NEITHER would work
22.

C.

BOTH
would work
b.

1. $\mathrm{CH}_{3} \mathrm{MgBr}$ (1 equiv)
2. $\mathrm{H}_{3} \mathrm{O}^{+}$

(4 pts each) Each of the reactions below is drawn with two possible products, marked (a) and (b). If one of the two products predominates, answer with the letter corresponding to the correct product. If the two products are produced equally, answer (c) BOTH. If neither product would result from the reaction, answer (d) NEITHER.
3.

a.

b.

c.
BOTH
(equally)
d.

NEITHER
24.

a.

b.

c.
BOTH (equally)
d.
NEITHER
25.

b.

c.
BOTH
(equally)
d.
NEITHER

Multiple-choice problems 26-31 are found later in the exam, on pages 6-7.
\qquad

Scoring:
32. \qquad / 29
35. \qquad / 14
33. \qquad / 25
36. \qquad / 26
34. \qquad / 32

Total Score: \qquad / 126
32. (29 pts) For the reactions shown below, draw a mechanism that explains how the product is generated from the starting material. In your answer, make sure that you:

- Draw each step of the mechanism separately;
- Use "electron pushing" to show where the electrons in each step go;
- Use only the molecules that you are given; do not invoke reactants or solvents that aren't in the problem.

Mechanism:

Mechanism:
33. (25 pts) Draw the missing reactant or product in the empty boxes. For products, give the predominant, most favored product. Illustrate stereochemistry in your answer where appropriate. For reactions that yield multiple enantiomers, draw only one enantiomer in the box, and include the note "+ enantiomer".

34. (32 pts) 1,5-dibromo-2,2-dimethylpentane can react with one equivalent of OH^{-}by $\mathrm{S}_{\mathrm{N}} 2$ substitution at either end on the molecule, to give products in which one of the bromines has been substituted by an alcohol group. In this problem, you will describe which of these two substitution products is favored over the other, and why.

$+$

(a) The single bonds in the starting material are free to rotate, and $\mathrm{S}_{\mathrm{N}} 2$ substitution of Br could occur in many different starting material conformations. In the boxes below, draw Newman projections that illustrate two different staggered conformations at the indicated bonds.

(b) Of the four Newman projections you drew above, which would react the fastest with OH^{-} in an $\mathrm{S}_{\mathrm{N}} 2$ reaction? Circle one Newman projection.
(Problem 3 continues on the next page.)
(c) On the diagram below:

- Draw potential energy curves for formation of each of the two $\mathrm{S}_{\mathrm{N}} 2$ products. (I have already drawn the energies of the starting materials and products; you just need to connect them with curves.)
- Draw activation energies $\left(\boldsymbol{E}_{\mathrm{a}}\right)$ for each of the two pathways.
- Draw the structure of the rate-determining transition state for each reaction. Feel free to draw these structures as Newman projections, just as you did in part (b).
- Circle the preferred $\mathrm{S}_{\mathbf{N}} 2$ product.

(Problem 3 continues on the next page.)
(d) In fact, both of these $\mathrm{S}_{\mathrm{N}} 2$ products are minor products of the reaction between one equivalent of OH^{-}and the starting material, because OH^{-}is a stronger base than it is a nucleophile. What molecule would be the preferred product of this reaction, and by what mechanism would it be produced?

35. (14 pts) Propose a multistep synthesis of the product shown below from the given starting materials, along with any reagents we have covered in class. You might discover multiple answers to this problem; draw only your best (one) synthetic route. Feel free to draw an incomplete route-we will give you partial credit where we can.

The spectra on this page correspond to a pure molecule, isolated from a chemical reaction. Highresolution mass spectrometry determined an exact mass of 102.0681 amu for the highest-mass (parent, M^{+}) peak in the MS spectrum, which corresponds to a molecular formula of $\mathbf{C}_{5} \mathbf{H}_{\mathbf{1 0}} \mathbf{O}_{\mathbf{2}}$.

(1 pt each) Based on the features in the IR spectrum, which of the following functional groups would you expect the unknown molecule to have? Would the molecule contain a
26.

a. Yes
b. No
29.

?
a. Yes
b. No
27.

a. Yes
b. No
?
30.
a. Yes
b. No
28.
$-\overbrace{C}^{\left(s p^{3}\right)}$
a. Yes
?
b. No
31.

a. Yes

b. No
36. (26 pts)
(a) The mass spectrum shows a parent mass peak at $m / z=102$, and two fairly high-mass fragment ions at $m / z=87$ and $m / z=71$. For these fragment ions to be observed, the parent molecule must have ejected neutral (invisible) fragments with mass (102-87) = 15 and $(102-71)=31$ atomic mass units (amu). What do you think are the structures of these neutral fragments?

neutral fragment with mass 15:

neutral fragment with mass 31:

(b) The mass spectrum shows a small peak at $m / z=103$, above the mass of the parent \mathbf{M}^{+} peak (102). Assuming that the material is pure (i.e., that there are no higher-mass contaminants in the sample), how is it possible that the mass of some molecules would be higher than expected? Please be brief. You could probably answer this in 10 words or less.
(c) What is the structure of the molecule? In the box below, draw your molecule's structure again, including all hydrogens. Then circle each set of equivalent H's, and label each with its unique ${ }^{1} \mathrm{H}$ NMR chemical shift.

your molecule $\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}\right)$

(d) Given your answer above, what is the structure of the daughter (fragment) cation in the mass spectrum that has $m / z=87$? You do not need to do electron pushing to answer this question-just draw the cation.
fragment cation with $m / z=87$

Summary of IR Stretching Frequencies

Frequency (cm^{-1})	Functional Group	Comments
3300	$\begin{array}{lr}\text { alcohol } & \begin{array}{r}\mathrm{O}-\mathrm{H} \\ \mathrm{N}-\mathrm{H}\end{array} \\ \text { amine, amide } & \equiv \mathrm{C}-\mathrm{H}\end{array}$	always broad may be broad, sharp, or broad with spikes always sharp, usually strong
3000	alkane	just below $3000 \mathrm{~cm}^{-1}$
	alkene	just above $3000 \mathrm{~cm}^{-1}$
	acid $\quad \mathrm{O}-\mathrm{H}$	very broad
2200	$\begin{array}{lr} \text { alkyne } & -\mathrm{C} \equiv \mathrm{C}- \\ \text { nitrile } & -\mathrm{C} \equiv \mathrm{~N} \end{array}$	just below $2200 \mathrm{~cm}^{-1}$ just above $2200 \mathrm{~cm}^{-1}$
$\begin{gathered} 1710 \\ \text { (very strong) } \end{gathered}$	carbonyl $>\mathrm{C}=\mathrm{O}$	ketones, aldehydes, acids esters higher, about $1735 \mathrm{~cm}^{-1}$ conjugation lowers frequency amides lower, about $1650 \mathrm{~cm}^{-1}$
1660	alkene	conjugation lowers frequency aromatic $\mathrm{C}=\mathrm{C}$ about $1600 \mathrm{~cm}^{-1}$
	imine	stronger than $\mathrm{C}=\mathrm{C}$
	amide	stronger than $\mathrm{C}=\mathrm{C}$ (see above)

Ethers, esters, and alcohols also show $\mathrm{C}-\mathrm{O}$ stretching between 1000 and $1200 \mathrm{~cm}^{-1}$.

Isotopic Composition of Some Common Elements

Element	M^{+}		M +1		M+2	
hydrogen	${ }^{1} \mathrm{H}$	100.0\%				
carbon	${ }^{12} \mathrm{C}$	98.9\%	${ }^{13} \mathrm{C}$	1.1\%		
nitrogen	${ }^{14} \mathrm{~N}$	99.6\%	${ }^{15} \mathrm{~N}$	0.4\%		
oxygen	${ }^{16} \mathrm{O}$	99.8\%			${ }^{18} \mathrm{O}$	0.2\%
sulfur	${ }^{32} \mathrm{~S}$	95.0\%	${ }^{33} \mathrm{~S}$	0.8\%	${ }^{34} \mathrm{~S}$	4.2\%
chlorine	${ }^{35} \mathrm{Cl}$	75.5\%			${ }^{37} \mathrm{Cl}$	24.5\%
bromine	${ }^{79} \mathrm{Br}$	50.5\%			${ }^{81} \mathrm{Br}$	49.5\%
iodine	${ }^{127} \mathrm{I}$	100.0\%				

APPENDIX 1A NMR: Proton Chemical Shifts

[^0]
APPENDIX 1A NMR: Proton Chemical Shifts

[^1]
$\mathrm{a}=$ axial, $\mathrm{e}=$ equatorial

APPENDIX 1C NMR: ${ }^{13} \mathrm{C}$ Chemical Shifts in Organic Compounds*:

ppm (TMS) 22021020019018017016015014013012011010090

[^2]Final Exam Chart of Reaction Conditions

Periodic Table of the Elements
California Standards Test

	$\begin{gathered} 1 \\ 1 \mathrm{~A} \end{gathered}$																	$\begin{aligned} & 18 \\ & 8 \mathrm{~A} \end{aligned}$
1		$\begin{gathered} 2 \\ 2 A \\ \hline \end{gathered}$						Key					$\begin{aligned} & 13 \\ & 3 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{array}{r} 14 \\ 4 \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 16 \\ & 6 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 7 \mathrm{~A} \\ & \hline \end{aligned}$	2 He Helium 4.00
2	$\begin{gathered} \hline 3 \\ \mathbf{L i} \mathbf{L i t h i u m} \\ 6.94 \\ \hline \end{gathered}$												5 \mathbf{B} Boron 10.81	$\underset{\substack{\text { Carbon } \\ 12.01}}{\mathbf{C}}$		$\begin{gathered} \hline 8 \\ \mathbf{O} \\ \text { Oxygen } \\ 16.00 \\ \hline \end{gathered}$	$\stackrel{\substack{9 \\ \text { Fluorine } \\ 19.00}}{\mathbf{F}}$	${ }^{10}$ Neon 20.18
3	11 Na Sodium 22.99		$\begin{gathered} 3 \\ 3 B \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 4 \mathrm{~B} \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ 5 B \\ \hline \end{gathered}$	22.99 6 6 6 B		rage atom 8	ic mass* 9 -8 B	10	$\begin{aligned} & 11 \\ & 1 B \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 2 \mathrm{~B} \\ & \hline \end{aligned}$		$\begin{gathered} 14 \\ \mathrm{Si} \\ \text { Silicon } \\ 28.09 \end{gathered}$		$\begin{array}{r} \hline 16 \\ \mathbf{S} \\ \text { Sulfur } \\ 32.07 \\ \hline \end{array}$	$\begin{gathered} 17 \\ \text { Cliorine } \\ \text { Cl } \\ \hline 5.45 \\ \hline \end{gathered}$	
4		$\begin{gathered} 20 \\ \text { Ca } \\ \text { Calcium } \\ 40.08 \\ \hline \end{gathered}$		$\begin{gathered} 22 \\ \begin{array}{c} \text { Titanium } \\ \text { Tint. } \end{array} \\ \hline 47.87 \end{gathered}$				$\begin{gathered} 26 \\ \text { Fe } \\ \text { Iron } \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ \text { Cobalt } \\ 58.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 28 \\ \mathbf{N i} \\ \begin{array}{c} \text { Nickel } \\ 58.69 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ \text { Copper } \\ 63.55 \end{gathered}$	$\begin{aligned} & 30 \\ & \text { Zn } \\ & \text { Znin } \\ & 65.39 \\ & \hline \end{aligned}$	$\begin{gathered} 31 \\ \text { Ga } \\ \text { Gallium } \\ 69.72 \\ \hline \end{gathered}$					$\begin{gathered} 36 \\ \begin{array}{c} \text { Krypton } \\ \text { Kr } \\ 83.80 \end{array} \end{gathered}$
5			$\begin{gathered} 39 \\ \mathbf{Y} \\ \text { Yttrium } \\ 88.91 \\ \hline \end{gathered}$										$\begin{gathered} \hline 49 \\ \text { In } \\ \text { Indium } \\ 114.82 \\ \hline \end{gathered}$				$\begin{array}{\|c\|} \hline 53 \\ \text { I } \\ \text { lodine } \\ 126.90 \\ \hline \end{array}$	$\begin{gathered} \hline 54 \\ \text { Xe } \\ \text { Xenon } \\ 131.29 \\ \hline \end{gathered}$
6	55 Cs Cesium 132.91								77 $\mathbf{I r}$ lidium lide.22 102	78 $\mathbf{P l}$ $\mathbf{P l a t i n u m ~}$ 195.08	79 Au Gold 196.97		81 TI $\begin{array}{c}\text { Thallium } \\ 204.38\end{array}$	$\begin{aligned} & \hline 82 \\ & \mathrm{~Pb} \\ & \text { Lead } \\ & 207.2 \\ & \hline \end{aligned}$				$\begin{aligned} & \begin{array}{l} 86 \\ \text { Rn } \\ \text { Radon } \\ (222) \end{array} \\ & \hline \end{aligned}$
7							${ }^{107}$ Bohrium (264)	108 Hs (269) Hassium (269)										
* If this number is in parentheses, then it refers to the atomic mass of the most stable isotope.					58 Ce Cerium 140.12					63 Eu Europium 151.96							70 $\mathbf{Y b}$ Y Yterbium 173.04	Li Lutetium 174.97 10
					90 Th Thorium 232.04	91 $\mathbf{P a}$ Protactinium 231.04$\|$	$\xrightarrow[\begin{array}{c}\text { Uranium } \\ 238.03\end{array}]{\substack{92 \\ \hline}}$	93 $\mathbf{N p}$ Neptunium (237)	94 $\mathbf{P u}$ Plutonium (244)	$\underset{\substack{\text { Americium } \\(243)}}{\substack{95 \\ \text { Am } \\ \hline}}$	$\begin{gathered} 96 \\ \text { Cm } \\ \substack{\text { Curium } \\ (247)} \\ \hline \end{gathered}$	97 Bk Berkelium (247)	$\underset{\substack{98 \\ \text { Californium } \\(251)}}{ }$	99 Esinteinium (252)	$\begin{gathered} 100 \\ \text { Fm } \\ \text { Fermium } \\ (257) \\ \hline \end{gathered}$	$\substack{101 \\ \text { Md } \\ \text { Mendelevium } \\ (258)}$	$\begin{gathered} 102 \\ \text { No } \\ \begin{array}{c} \text { Nobelium } \\ (259) \end{array} \\ \hline \end{gathered}$	$\left.\begin{array}{\|c\|}\hline 103 \\ \mathbf{L r} \\ \text { Lawrencium } \\ \text { (262) }\end{array}\right]$

[^0]: ${ }^{a}$ Normally, absorptions for the functional groups indicated will be found within the range shown in black. Occasionally, a functional group will absorb outside this range. Approximate limits are indicated by extended outlines.
 ${ }^{\mathrm{b}}$ Absorption positions of these groups are concentration-dependent and are shifted to lower δ values in more dilute solutions.

[^1]: ${ }^{a}$ Normally, absorptions for the functional groups indicated will be found within the range shown in black. Occasionally, a functional group will absorb outside this range. Approximate limits are indicated by extended outlines.
 ${ }^{\mathrm{b}}$ Absorption positions of these groups are concentration-dependent and are shifted to lower δ values in more dilute solutions.

[^2]: *Relative to internal tetramethylsilane.
 Copyright 1998 by Bruker Analytik GmbH. Used by permission.

