ID # _____

ORGANIC CHEMISTRY I (2301)

9:30 - 10:45 am, August 8, 2013

Final Exam

There will be two ways that you can pick up your graded Final Exam:

- You can pick up your graded exam from Andy at office hours that he will hold on Monday, August 6th (9:30-10:30 am) at Coffman Union Starbucks.
- Alternately, you will be able to pick up your graded exam from Chemistry department staff in 115 Smith beginning Monday, August 6th at noon. Exams that are not picked up within two weeks will be disposed of.

A periodic table, a chart of reaction conditions, and a table of typical NMR chemical shifts are attached to the back of this exam as aids. Otherwise, you are not permitted to use any other materials (including notes, books, or electronic devices of any kind).

Right now, write your name and student ID number at the top of this page. When the exam begins, please write your name at the top of the next page.

You may use pen or pencil. However, re-grades will be considered only for exams completed in pen.

Please write your answers in the boxes/spaces provided. If your answer is not in the appropriate space (say, for example, it's on the back of the page), draw us an arrow and/or note telling us where to look.

Total Score: _____ / 150

- 1. (14 pts) For each of the pairs of acids (or bases) below,
 - Draw the conjugate base (or acid).
 - Circle whether you think the first acid (or base) is more or less acidic (or basic) than the second.

- 2. (14 pts) For the molecule drawn at right, in the boxes provided:
 - Draw all significant resonance structures. In each structure, draw all atoms, bonds, lone pairs of electrons, and formal charges.

- Draw a Lewis wedge/dashed-bond structure that illustrates the most stable threedimensional conformation of the molecule. Draw all atoms, bonds, and charges, but omit lone pairs.
- In the boxes provided, write the hybridization state on any atom heavier than hydrogen.

3. (39 pts) The molecule below has two chiral centers (marked with asterisks) and three stereoisomers; one stereoisomer is achiral (*meso*), and two are chiral. Each stereoisomer reacts with NaOCH₃ via E2 elimination to yield, selectively, a single alkene product.

(a) I have drawn the molecule on the previous page entirely in the plane of the page, without any stereochemical information. Using wedge and dashed-bond lines, draw the achiral stereoisomer and one of the two chiral stereoisomers as three-dimensional structures. Then, label each stereocenter in your structures "(R)" or "(S)".

achiral (meso) stereoisomer	chiral stereoisomer

(b) What is the stereochemical relationship between the two molecules you drew above? Are they

enantiomers or diastereomers or neither	antiomers	or	diastereomers	or	neither	?
---	-----------	----	---------------	----	---------	---

(Circle one answer.)

(c) E2 elimination requires a very specific geometric relationship between the leaving group and the proton being taken by the incoming base. In the boxes below, draw a Newman projection for each of the stereoisomers you drew above that puts the proton and leaving group in the right orientation to undergo E2. Then, "push arrows" on each diagram to illustrate the mechanism of the E2 elimination.

(d) Which alkene product will be generated via E2 from each of the two stereoisomers you drew?

- (e) On the potential energy diagram below, draw curves that represent the E2 elimination of each starting material to products **A** and **B**. The starting material energies have already been drawn for you (we will assume they are equal in energy)—you need to connect these starting points to transition state and product energies. Your curves should answer the following questions:
 - Is product **B** higher, lower, or equal in energy relative to product **A**? Label your diagram so that it is clear which product energy level corresponds to which product.
 - How many steps, and how many transition states, does each E2 pathway have?
 - Is the overall activation energy for making product **B** larger, smaller, or equal to the activation energy for making product **A**?

4. (20 pts) Each of the reactions below is drawn with two possible products. If one of the two products predominates, circle that preferred product. If the two products are produced <u>equally</u>, circle "BOTH". If neither product would result from the reaction, circle "NEITHER". **Circle one answer only.**

5. (9 pts) Draw a mechanism (using "electron pushing") for the reaction shown below. Draw each mechanistic step explicitly; don't cheat by combining multiple processes in a single step. Use only the molecules shown in the problem; don't invoke generic species. (E.g., don't use "H-A" as a generic acid.)

6. (9 pts) Of the C-H bonds highlighted below, which:

7. (15 pts) For the starting materials and product shown below, **propose a multistep synthesis**. In addition to the molecules shown, you can use any reagents and reactions we've learned about in class. You might discover multiple answers to this problem; draw only your best (one) synthetic route. Feel free to draw an incomplete route—we will give you partial credit where we can.

Multistep synthesis:

8. (18 pts) For each of the reactions on the following pages, fill in the empty box corresponding to the major product. Wherever appropriate, illustrate stereochemistry in your drawings (using wedge and dashed bonds). If multiple enantiomers or diastereomers are produced, indicate this in the answer box (e.g., by writing "+ enantiomer", etc.)

9. (12 pts) The ¹H NMR spectrum below corresponds to one of the following dichlorinated alkanes:

- (a) Circle the molecule that would give this spectrum.
- (b) The carbons of each candidate molecule structure are labeled "a" through "d". Each multiplet in the NMR spectrum corresponds to H atoms attached to a single carbon atom. In the box above each multiplet, write the letter of the carbon that each peak's H atoms are attached to.

¹H NMR Absorptions

Compound type	Chemical shift (ppm)
Alcohol	
R-O-H	1–5
H T	
R-Ċ-O	3.4–4.0
Aldehyde	
Q	
R ^{−C} [−] H	9–10
Alkane	0.9–2.0
RCH ₃	~0.9
R ₂ CH ₂	~1.3
R ₃ CH	~1.7
Alkene	
C=C sp ² C-H	4.5–6.0
∖ с−н	
C=C allylic sp ³ C-H	1.5–2.5
Alkyl halide	
H R-Ċ-F	4.0-4.5
H R-C-CI	3.0-4.0
H R-C-Br I	2.7–4.0
H R-C-I	2.2–4.0
Alkyne	
	-25

Compound type	Chemical shif
Amide	
Q	
R ^{∕C} Ņ−H	7.5–8.5
Amine	
R-N-H	0.5-5.0
B-C-N-	2.3-3.0
ŤÎ	2.0 0.0
Aromatic compound	
	6 5 9
Sp-C-H	0.5-6
	15.05
C-H benzylic sp ^o C-H	1.5-2.5
Out and a second	
C H	
\wedge sp^3 C-H on the α carbon	2.0–2.5
Carboxylic acid	
U C.	10-12
ROH	10 12
Ether H	
R-C-O-R	3.4-4.0

Carbon type	Structure	Chemical shift (ppm)
Alkyl, sp ³ hybridized C	—с–н	5–45
Alkyl, sp ³ hybridized C bonded to N, O, or X		30-80
Alkynyl, sp hybridized C	—C≡C—	65–100
Alkenyl, sp ² hybridized C)c=c	100–140
Aryl, sp ² hybridized C	<u> </u>	120–150
Carbonyl C)c=o	160-210

Final Exam Chart of Reaction Conditions

California Standards Test

Chemistry Reference Sheet

Periodic Table of the Elements

18 8A 2	Helium 4.00	10 Ne on 20.18	18 Ar	Argon 39.95	36	Krypton	83.80	54	Xenon	131.29	86	Rn	Radon (222)				71	Lu	Lutetium 174.97	103	Ļ	Lawrencium (262)
	17 7A	9 Fluorine 19.00	17 C	Chlorine 35.45	35	Br Bromine	79.90	- 23	lodine	126.90	85	At	Astatine (210)				20	ЧY	Ytterbium 173.04	102	No No	Nobelium (259)
	16 6A	8 O Oxygen 16.00	بې 16	Sulfur 32.07	34	Selenium	78.96	52	Tellurium	127.60	84	Ъо	Polonium (209)				69	ЦД	Thulium 168.93	101	Md	Mendelevium (258)
	15 5A	7 N Nitrogen 14.01	15 D	Phosphorus 30.97	33	AS Arsenic	74.92	51 2	SD Antimony	121.76	83	<u>B</u>	Bismuth 208.98				68	ц	Erbium 167.26	100	Fm	Fermium (257)
	14 4A	6 Carbon 12.01	14 Si	Silicon 28.09	32	Ge Germanium	72.61	50	ר ב ר	118.71	82	Ъb	Lead 207.2				67	Ро	Holmium 164.93	66	Es	Einsteinium (252)
	13 3A	5 B Boron 10.81	13 A	Aluminum 26.98	31	Ga llium	69.72	49	LD Indium	114.82	81	F	Thallium 204.38				99	D	Dysprosium 162.50	98	Ç	Californium (251)
			-	12 2B	30	Z inc	65.39	48	Cadmium	112.41	80	Hg	Mercury 200.59				65	Ч	Terbium 158.93	97	BĶ	Berkelium (247)
				= = =	29	Copper	63.55		Ag Silver	107.87	62	Au	Gold 196.97				64	Gd	Gadolinium 157.25	96	Cm	Curium (247)
			10	28	N ickel	58.69	46	Palladium	106.42	82	£	Platinum 195.08				63	Ш	Europium 151.96	95	Am	Americium (243)	
	о <mark>О</mark> а	nic mass*	9 	27	Cobalt Cobalt	58.93	45	Rhodium Bhodium	102.91	<i>LL</i>	Ţ	Iridium 192.22	109	Mt Meitnerium	(268)	62	Sm	Samarium 150.36	94	Pu	Plutonium (244)	
	(ey	mic numb ment sym ment nam	erage aton	∞	26	Fe Iron	55.85	44	Ruthenium	101.07	92	0s	Osmium 190.23	108	HS Hassium	(269)	61	Рп	Promethium (145)	93	dN	Neptunium (237)
	¥		ية ال	7 7B	25	Mn Manganese	54.94	43 43	I C Technetium	(98)	22	Re	Rhenium 186.21	107	Bh Bohrium	(264)	60	PN	Neodymium 144.24	92	D	Uranium 238.03
		11- Sodiur	55.98	6 6B	24	Chromium Chromium	52.00	42	Molybdenum	95.94	74	≥	Tungsten 183.84	106	Sg Seaborgium	(266)	59	Pr	Praseodymium 140.91	91	Ра	Protactinium 231.04
				5 5B	23	V Vanadium	50.94	41	Niobium	92.91	73	Та	Tantalum 180.95	105	Db Dubnium	(262)	58	S	Cerium 140.12	06	Тh	Thorium 232.04
				4 4 B	22	Ti Titanium	47.87	40	Zirconium	91.22	72	Ŧ	Hafnium 178.49	104	R therfordium	(261)			nen			
				а ЗВ зВ	21	Scandium Scandium	44.96	39	Yttrium	88.91	57	La	Lanthanum 138.91	89	AC Actinium	(227)	ntheses, the ass of the					
	2A 2A	4 Beryllium 9.01	12 Ma	Magnesium 24.31	20	Calcium Calcium	40.08	38	Strontium	87.62	56	Ba	Barium 137.33	88	Radium Radium	(226)			oer is in par	the atomic r	a Isolope.	
1 1 1	Hydrogen 1.01	3 Lithium 6.94	÷ S	Sodium 22.99	19	Potassium	39.10	37	Rubidium Bubidium	85.47	55	S	Cesium 132.91	87	Fr Francium	(223)			If this numk	it refers to t	IIIUSI SIAUIE	
	-	N	c	0		4			ŝ			G)						*			

Copyright © 2008 California Department of Education