

Bond Dissociation Enthalpies

BDE: Enthalpy required to break a bond into component radicals $(A - B \rightarrow A^{\bullet} + {\bullet}B)$

Bond	BDE (kcal/mol)	Bond	BDE (kcal/mol)
CI—CI	58	CH ₃ —CI	84
H—CI	103	CH_3CH_2 —CI	81
CH ₃ —H CH ₃ CH ₂ —H	104 98	$(CH_3)_2CH_C$ $(CH_3)_3C_C$	79
(CH ₃) ₂ CH—H	95	CH ₃ —Br	70
(CH ₃) ₃ C—H	91	CH ₃ CH ₂ —Br	68
$C_6H_5CH_2-H$ $CH_2=CH-CH_2$	88 —H 86	(CH ₃) ₂ CH—Br (CH ₃) ₃ C—Br	68 65

Selectivity in Radical Halogenation

• Bromination is even more selective than chlorination.

Bond Dissociation Enthalpies

BDE: Enthalpy required to break a bond into component radicals $(A - B \rightarrow A^{\bullet} + {\bullet}B)$

Bond	BDE (kcal/mol)	Bond	BDE (kcal/mol)
CI—CI	58 103	CH ₃ —CI	84 81
CH₃—H	104	(CH ₃) ₂ CH—CI (CH ₃) ₃ C—CI	80 79
$(CH_3)_2CH_H$ (CH_3)_2CH_H	98 95 91	CH ₃ —Br	70 68
$C_6H_5CH_2$ —H CH ₂ =CH-CH ₂ ·	88 —H 86	$(CH_3)_2CH$ —Br $(CH_3)_3C$ —Br	68 65

Allylic and Benzylic Bromination with NBS

Problem: Br_2 also reacts with double bonds.

Solution: Use a different reagent (w/ the same mechanism).

Multiple Halogenations

Problem: Once one C-H has been converted to a C-X, another one can be. This can lead to a mixture of products.

