Diastereomers Can Be Separated

Different properties mean diastereomers can often
be physically separated from one another.

Property Separation Technique
boiling point distillation
solubility recrystallization
affinity for a
solid support chromatography
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Resolution of Enantiomers
(by Conversion to Diastereomers)

Wade shows:
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Resolution of Enantiomers
(by Formation of Diastereomeric Salts)

But more common nowadays: Q O
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2"d Order Nucleophilic Substitution
(Sn2)

S\2 Is a reaction mechanism that substitutes one
functional group for another.
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nucleophile electrophile product

2nd Order because two molecules

involved in rate expression:

rate = K[OH][CH4Br]

leaving
group

Nucleophile-Electrophile Combinations

Nuc:®™ + R—X — Nuc—R + X
Nucleophile Product Class of Product

Common feature . 7. —s  R—I: alkyl halide
of nucleophiles: , . "

R—X :OH — R—OH alcohol
electrons % &
available to R=%X + "OR == R—OR’ ether
donate to a new R—X + “:H — R—SH thiol (mercaptan)
bond. R—X + ~:SR’ — R—SR’ thioether (sulfide)

R—X + :NH, — R—NH? X amine

R—X + —:N=N=N: — R—N=N=N: azide

R—X + —:C=C—FR’ — R—C=C—R’ alkyne

R—X :C=N: — R—C=N: nitrile

R—X + R'—CO0: — R'—COO—R ester

R—X + :P(Ph), — [R—PPh,]" "X phosphonium salt




2"d Order Nucleophilic Substitution

(Sn2)
H H
o \ / o
o® + C—Br —> HO—C, + B
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Nucleophile approaches,
adds from behind leaving
group.

As a result,
stereochemistry at
electrophile inverts.

Halfway, reaction passes
through its transition
state.

Backside Attack in S32

Explained by orbital interactions and mixing.

H\
RN *
; RN < G
p\\\“C B & Br\\) (antibonding)
H lone pair / H
\)\O . /]L ‘:"' ,"" H
>0 @ .4/
H
. 1 o 5
Lone pair orbital —_— &®C Bre® _
o N (bonding)
stabilized by H\‘
interaction with H

C-Br o*.




Backside Attack in S32

Explained by orbital interactions and mixing.

lone pair H
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* Interaction is only possible
if nucleophile is opposite
leaving group.

T
2,0 _T
[

Bre® o

* This interaction will (bonding)
become the new C-O
bonding orbital; only

possible in this orientation.
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2"d Order Nucleophilic Substitution
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S\2 Proceeds with Inversion of
Configuration
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HO® + _ WC—Br —> | HO=—C-Br | —> HO—C,, — + Br°
CHM | l$ \ /CH,4
CH5CH, CH4CH3z» CH3 CH,CH4

(S)-2-bromobutane (R)-2-butanol

Warning: Inversion of stereochemistry doesn’t necessarily mean
inversion of naming. (S) doesn’t always become (R).

The S,2 Transition State
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positive:

Electron density distributed
between nucleophile and
leaving group.

even more neqative:

5 repelling electron pairs at
reaction center.
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The S,2 Transition State
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H activation energy H
k = Ae(-Ea/RT) S\ 2 reactions are usually
2 not equilibria.
P
= Success or failure of
S reaction depends on height
I of activation barrier (not on
‘GEJ ————————————— energy of products).
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reaction coordinate




