What Makes a Good Nucleophile?

$$Nuc^{\Theta} + H \downarrow C - X \rightarrow \begin{bmatrix} H & H & H \\ Nuc - - - C & - - - X \\ H & H \end{bmatrix} \xrightarrow{\ddagger} Nuc - C \downarrow H + X^{\Theta}$$

1. Wants to give away electrons (good Lewis base).

What Makes a Good Nucleophile?

2. More polarizable. (Bigger.)

So, I is a better nucleophile than F.

What Makes a Good Nucleophile?

3. Not too sterically hindered.

hindered nucleophile

What Makes a Good Nucleophile?

4. Not obscured by too polar a solvent.

So, $S_N 2$ reactions are usually run in medium polarity solvents; polar enough to dissolve ionic species, not so polar to cage the nucleophile.

Some Common Nucleophiles

TABLE 6-3 Some Common Nucleophiles. Listed in Decreasing Order of Nucleophilicity in Hydroxylic Solvents Such as Water and Alcohols

strong nucleophiles	(CH ₃ CH ₂) ₃ P:	moderate nucleophiles	: <u>B</u> r:-
	∹ <u>;</u> H		: NH ₃
	: <u>Ï</u> :-		СН3—Ё—СН
	(CH ₃ CH ₂) ₂ NH		:Ċl:-
	-:C≡N		O
	(CH ₃ CH ₂) ₃ N:		CH³Ç—Ö:-
	H−Ö:- CH₃−Ö:-	weak nucleophiles	:F:-
			 н—ö—н
			CH ₃ —Ö—H

Comparing Nucleophile Quality with Potential Energy Diagrams

Comparing Nucleophile Quality with Potential Energy Diagrams

The Hammond Postulate

For similar reactions, differences in starting material or product stabilities will be reflected in transition state (to a lesser degree).

What Makes a Good Leaving Group?

1. Wants to take electrons (electronegative).

What Makes a Good Leaving Group?

2. Polarizable. (Stabilizes transition state.)

So, I^{Θ} is a better leaving group than F^{Θ} .

Interesting consequence: I^{Θ} is both a good nucleophile and a good leaving group.

What Makes a Good Leaving Group?

3. Products are stable; S_N^2 wouldn't work much better in reverse.

Example:

 $^{\Theta}$ OH is a much better nucleophile than Br $^{\Theta}$; this reaction would revert if it ever happened. So it doesn't happen.

Steric Hindrance at the S_N2 Reaction Center Inhibits Reaction

Inhibition of S_N2 by Neopentyl Groups

TABLE 6-5 Effect of Substituents on the Rates of S _N 2 Reactions			
Class of Halide	Example	Relative Rate	
methyl	CH ₃ —Br	>1000	
primary (1°)	CH ₃ CH ₂ —Br	50	
secondary (2°)	$(CH_3)_2CH$ —Br	1	
tertiary (3°)	$(CH_3)_3C$ —Br	< 0.001	
<i>n</i> -butyl (1°)	outyl (1°) CH ₃ CH ₂ CH ₂ CH ₂ —Br		
isobutyl (1°)	$(CH_3)_2CHCH_2$ —Br	2	
neopentyl (1°)	$(CH_3)_3CCH_2$ —Br	0.0005	