Chemical Shift: Equivalence

Nuclei are equivalent if they experience identical chemical environments. Equivalent nuclei have the same chemical shift (and appear as one resonance).

A good way to tell: Looking at two nuclei, would replacing one of them with another atom-say, F-yield the same molecule as replacing the other? (Or its enantiomer?) If so, the two nuclei are equivalent.
equivalent

So, two resonances expected in NMR spectrum.

Integrated Area Under Peaks Corresponds to Number of Equivalent Protons

Spin-Spin Coupling

For a single, isolated proton:

Just one peak, corresponding to one frequency.

Field felt by a proton is affected by spin of adjacent proton:
今 ${ }^{\text {。 }}$

"microfield"
OR

$B_{\text {eff }}>B_{0}$

Spin-Spin Coupling Leads to Peak "Splitting"

"microfield"
When "coupled" spins are aligned, field felt is less than usual;
$B_{\text {eff }}<B_{0}$

"microfield"

When "coupled" spins are opposed, field felt is more than usual;

$$
B_{\text {eff }}>B_{o}
$$

$$
v_{2}>v_{0}
$$

So, a proton with one adjacent proton will produce a doublet (" d ").

coupling constant

$$
J=v_{2}-v_{1}
$$

Characteristics of Splitting

- Coupling is only observed between inequivalent protons.

singlet (s).
- δ is expressed in ppm (because frequency ratio $\mathrm{Hz} / \mathrm{MHz}$ doesn't vary from spectrometer to spectrometer).
- J is expressed in Hz (because frequency difference in Hz doesn't vary, so ratio $\mathrm{Hz} / \mathrm{MHz}$ does).

A Little More About J

- Coupling constant \boldsymbol{J} is same in both directions for a coupled pair.

- Coupling is most often vicinal (on adjacent C's). But there are other types.
$J_{\text {vicinal }}$

(only if protons are inequivalent)

(in this class, do not worry about this type)

Splitting By Multiple Adjacent Protons

triplet (t).
" $\mathrm{N}+1$ " rule:

For simple splitting (all J's are equal), \# of peaks = \# of interacting nuclei (N) + 1

For H above, $\#$ of peaks $=2+1$ = 3 .

Splitting By Multiple Adjacent Protons

" $\mathrm{N}+1$ " rule:

For simple splitting (all J's are equal),
\# of peaks = \# of interacting nuclei (N) + 1
For H above, $\#$ of peaks $=2+1=3$.

Spin-Spin Coupling: Simple Splitting and Pascal's Triangle

Splitting patterns for multiple protons (if all J values are the same) can be evaluated by Pascal's triangle:

1. Start apex of triangle with a single line, intensity 1.
2. Create next row with one more line. Make outside line intensities 1.
3. Make inside line intensities sum of two lines above.
4. Repeat steps 2 \& 3 until you have $N+1$ lines.

Example of Spin-Spin Coupling

Typical J Values

Spin-Spin Coupling: Simple Splitting and Pascal's Triangle

Can think of Pascal's triangle as a way of expressing splitting for multiple coupling constants $\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}$, etc., where $J_{1}=J_{2}=J_{3}$.

Spin-Spin Coupling: More Complex Splitting

What if coupling constants aren't equal?

Splitting pattern gets more complicated, doesn't follow Pascal's triangle.

doublet of doublets (dd)

Spin-Spin Coupling: More Complex Splitting

What if coupling constants aren't equal?

Splitting pattern gets more complicated, doesn't follow Pascal's triangle.

For case of doublet of doublets, can measure J's directly from spectrum.

doublet of doublets (dd)

