Catalytic Hydrogenation of Alkynes

Under standard conditions (Pt/H₂), alkynes are doubly hydrogenated to alkanes.

Electrophilic Addition to Terminal Alkynes

Follows Markovnikov's rule, passing through the most stable carbocation.

Hydrohalogenation of Terminal Alkynes

Identical conditions and selectivity to alkenes.

Markovnikov Hydration of Alkynes

Forms an alkenyl alcohol—an enol—as a reactive intermediate. But the eventual product is a ketone.

Anti-Markovnikov Hydration of Alkynes

Mild Permanganate Oxidation of Alkynes

At pH = 7, permanganate (MnO_4^-) converts alkynes to C=O groups, but keeps the C-C bond intact.

Strong Permanganate Oxidation of Alkynes

Under harsher conditions, MnO_4^- cleaves the C=C bond to yield carboxylic acids.

also cleaves C-C bond, w/ same products.

Chapter 9 Material Not Covered in Lecture:

Nomenclature, Physical Properties, Commercial Importance:

Addition of Acetylide lons to Carbonyl Groups:

Synthesis of Alkynes by Elimination Reactions:

Read Wade 9.2-9.4.

Wade, Chap. 9.7B. Covered w/ Chap. 10.

Wade, Chap. 9.8. Not important.