
Acidity of Alcohols

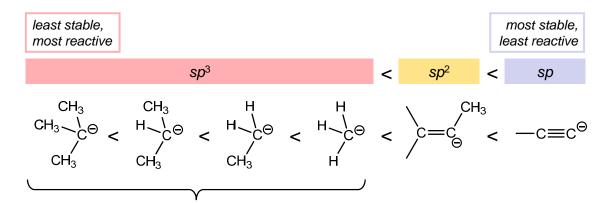
Nucleophilic Addition to Carbonyls

Heteroatom electron donors add reversibly to C=O groups.

$$RO^{\Theta}$$
 + RO^{Θ} RO RO^{Θ} Equilibrium driven to the left by:

• strength of C=O double bond
• entropy

Carbon anions add irreversibly to C=O groups.

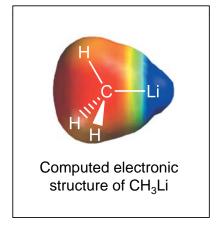

$$RCH_2^{\Theta}$$
 + PO \longrightarrow RCH_2 \longrightarrow O^{Θ} Reaction driven to the right by:

• instability of charge on

true for all carbon anions.

charge on RCH₂-

Relative Stabilities of Carbanions



Increasing substitution pushes electron density onto carbon, destabilizes anion (and makes it more basic, and more reactive).

All of these anions add irreversibly to carbonyls,

$$R^{\Theta} + > 0 \rightarrow R \rightarrow 0^{\Theta}$$

Organometallic Reagents are Synthetically Equivalent to Carbanions

R—Li alkyllithium (organolithium)

R-Mg-Br Grignard reagent

(organomagnesium halide)

R-C≡C-Na alkynylsodium

All of these react as "R "

Generating Organometallic Reagents

1. Deprotonation.

Not common. Works for alkynyl, some sp² anions, but not for sp³ (because alkanes are not acidic enough).

Examples:

$$CH_3-C\equiv C-H$$
 + $NaNH_2$ \longrightarrow $CH_3-C\equiv C-Na$ + NH_3

Generating Organometallic Reagents

2. Metalation of an alkyl halide.

Common for Grignard reagents, sp^3 alkyllithiums.

Examples:

Generating Organometallic Reagents

3. Lithium-halogen exchange.

Common for sp^2 alkyllithiums. Not useful for sp^3 alkyllithiums. Example:

Reaction is driven by formation of more stable carbanion:

Reaction of Alkylmetals With C=O Bonds

$$R-MgBr + \bigvee_{H}^{H}O \xrightarrow{1.} R \xrightarrow{H}O^{\Theta} \xrightarrow{2. H^{+}} R \xrightarrow{H}OH$$

formaldehyde

primary alcohol

$$R-Li \qquad + \bigvee_{H}^{R'} O \qquad \xrightarrow{1.} \qquad R \bigvee_{H}^{R'} O^{\Theta} \qquad \xrightarrow{2. \ H^+} \qquad R \bigvee_{H}^{R'} OH$$

aldehyde

secondary alcohol

$$R-Na \qquad + \begin{array}{c} R' \\ R'' \end{array} \longrightarrow \begin{array}{c} R' \\ R' \end{array} \longrightarrow \begin{array}{c} R' \\ R'$$

ketone

tertiary alcohol

For any alkylmetal reagent,