

## Wedge/Dash-Bond Drawings

How might you draw 3-D perspective for:



Only  $\sigma$ -bonding hybrid orbitals determine geometry by VSEPR.

## Geometry of Ethene (CH<sub>2</sub>CH<sub>2</sub>)





## Summary of Hybridization and Shape

| Sum of $\sigma$ -bonds and lone pairs | Hybridization   | $\pi$ -bonds | shape           |
|---------------------------------------|-----------------|--------------|-----------------|
| 4                                     | sp <sup>3</sup> | 0            | tetrahedral     |
| 3                                     | sp <sup>2</sup> | 1            | trigonal planar |
| 2                                     | sp              | 2            | linear          |

So, for the two-dimensional molecule drawings below,

(i) Give the hybridization of all non-H atoms;

(ii) Re-draw the molecules to reflect a possible 3-D geometry.



## **Including Resonance in Geometry** What if a molecule can be described by multiple good (major) resonance structures? For each atom, the lowest hybridization state observed in major resonance structures is the correct one. Example: What is hybridization on nitrogen atoms? N N N H N sp². No. sp<sup>2</sup>. Answer: Both are sp<sup>2</sup>. Nominally *sp*<sup>3</sup>-Hybridized Lone Pairs Adjacent to Multiple Bonds Switch to p Η NOT sp<sup>3</sup>. sp<sup>2</sup>. Lone pair occupies a p orbital, so it can mix with C-O $\pi$ bond. Oddly, this only works for nominally *sp*<sup>3</sup> atoms. stays sp<sup>2</sup>



