Naming Alkanes and Alkyl Groups

Table 2.1 Nomenclature and Physical Properties of Straight-Chain Alkanes					
Number of carbons	Molecular formula	Name	Condensed structure	(linear alka	
1	CH_4	methane	CH_4	are also cal <i>n</i> -alkanes,	
2	C_2H_6	ethane	CH ₃ CH ₃		
3	C_3H_8	propane	CH ₃ CH ₂ CH ₃		
4	$C_{4}H_{10}$	butane	CH ₃ CH ₂ CH ₂ CH ₃	"normol")	
5	$C_{5}H_{12}$	pentane	CH ₃ (CH ₂) ₃ CH ₃	normar)	
6	$C_{6}H_{14}$	hexane	CH ₃ (CH ₂) ₄ CH ₃		
7	C7H16	heptane	CH ₃ (CH ₂) ₅ CH ₃		
8	C8H18	octane	CH ₃ (CH ₂) ₆ CH ₃		
:	:	:	:		

Names of alkyl fragments derive from alkanes:

Naming Functionalized Alkanes

CH ₄ methane	CH ₃ (or H ₃ C) methyl	—OH alcohol	CH ₃ —OH methyl alcohol (methanol)
CH ₃ CH ₃ ethane	CH ₃ CH ₂ ethyl		$CH_3CH_2 - O \xrightarrow{O}_{acetic \ acid} O CH_3$
CH ₃ CH ₂ CH ₃ propane	CH ₃ CH ₂ CH ₂ <i>n-propyl</i> <i>iso-propyl</i> CH ⁻ CH ⁻	esterNH ₂	ethyl ester (ethyl acetate) CH ₃ CH ⁻ NH ₂ CH ₂ ^{isopropyl}
CH ₃ CH ₂ CH ₂ CH ₃ butane	$ \begin{array}{c} CH_3CH_2CH_2CH_2CH_2 \\ & & CH_3 \\ & CH_3 \\ & & CH_3 \\ & CH_3 \\ & CH_3 \\ & CH_2 \\ & CH_3 \\ & & CH_2 \\ & & CH_3 \end{array} \\ \end{array} $	ether	CH_3 $H_3C = O = C = CH_3$ $M_3C = O = C = CH_3$ $Methyl tert-butyl = CH_3$ ether (MTBE)

Rotation About Single Bond in Ethane

Rotation About Single Bond in Ethane

Torsional energy of 2.9 kcal/mol must be overcome to rotate 120°. Timescale of that happening: once every 100 femtoseconds (at room temp).

Rotation About Single Bond in Ethane

Rotation About Single Bond in Ethane

(Simulation performed by molecular dynamics, using standard rotational and vibrational potentials.)

Rotation About Single Bond in Butane

Points to note:

Gauche is not that much less stable than anti; so, butane spends plenty of time in gauche conformation.

Barrier to rotation of end methyl groups (3.3 kcal/mol) is less than that of internal C-C bond (5 kcal/mol).

Conformational Preferences Extend to Higher Alkanes

For linear alkanes, the all-anti conformation is preferred...

Conformational Preferences Extend to Higher Alkanes

For linear alkanes, the all-anti conformation is preferred...

...but not by much. Gauche conformers frequently observed.