Cycloalkanes

cyclopropane $\mathrm{C}_{3} \mathrm{H}_{6}$

cyclobutane
$\mathrm{C}_{4} \mathrm{H}_{8}$

Although $s p^{3}$ carbons would normally have bond angles of 109.5°, these bond-angle structures show C-C-C angles of

60°	90°	108°	120°	129°
(triangle)	(square)	(pentagon)	(hexagon)	(heptagon)

So what are they really, and what is the cost of them not being 109.5° ?

Heats of Combustion for Cycloalkanes

Some cycloalkanes have more energy stored in them (and are less stable) than others.

For combustion, $\mathrm{C}_{n} \mathrm{H}_{2 n}+3 / 2 n \mathrm{O}_{2} \longrightarrow n \mathrm{CO}_{2}+n \mathrm{H}_{2} \mathrm{O} \quad \Delta H_{\text {combustion }}<0$.

	Δ	7			
$\Delta H_{\text {combustion }}$	-499 $/ \mathrm{kcal}$	-656 ${ }_{\text {/ }}^{\text {/mol }}$	-793 ${ }_{\text {/ }}^{\text {/mol }}$	-944 ${ }_{\text {/ }}^{\text {/mol }}$	-1108 ${ }_{\text {/mol }}^{\text {/mol }}$
$\Delta H_{\text {combustion }}$ per $-\mathrm{CH}_{2}-$	-167 $/$ kcal	-164 ${ }_{\text {/ }}^{\text {kcal }}$	-159 ${ }_{\text {/ }}^{\text {/mol }}$	-157 ${ }_{\text {/ }}^{\text {kcal }}$	-158 ${ }_{\text {kcal }}^{\text {/mol }}$
"ring strain" per $-\mathrm{CH}_{2}-$	9.2 kcal	$6.6 \begin{aligned} & \text { kcal } \\ & / \mathrm{mol}\end{aligned}$	$1.3 \begin{aligned} & \text { kcal } \\ & / \mathrm{mol}\end{aligned}$	$0 \begin{aligned} & \text { kcal } \\ & \text { /mol }\end{aligned}$	0.9 / $/ \mathrm{kcal}$
total ring strain	27.6 /mol	$26.3{ }_{\text {/ }}^{\text {/mol }}$	$6.5 \frac{\mathrm{kcal}}{\text { /mol }}$	0 kcal	$6.4{ }^{\text {/ }} \mathrm{mol}$

Why Are Smaller Cycloalkanes So Unstable?

1. Angle strain.

Corresponds to difference between actual bond angle and $s p^{3}$ $\theta=109.5^{\circ}$.

For cyclopropane,

Poor orbital overlap leads to weaker bonds.

Why Are Smaller Cycloalkanes So Unstable?

1. Angle strain.
$s p^{3}$ carbons want to have $\theta=109.5^{\circ}$, but can't.
2. Torsional strain. (Eclipsing interactions.)

For cyclopropane,

Why Are Smaller Cycloalkanes So Unstable?

1. Angle strain.
sp ${ }^{3}$ carbons want to have $\theta=109.5^{\circ}$, but can't.
2. Torsional strain. (Eclipsing interactions.)

For cyclobutane, molecule folds/twists a bit to reduce eclipsing.
88° bond angles
(rather than 90° for planar conformation)

slightly folded conformation

Newman projection of one bond

Molecule takes on additional angle strain to reduce torsional strain.

Conformation of Cyclopentane

Newman projection showing relief of eclipsing of bonds
from

Cyclopentane assumes an "envelope" conformation.
A little bit of angle strain (in flap),
A little bit of torsional strain (in back).

Conformations of Cyclohexane

Preferred 109.5° bond angle is smaller than hexagon angle $\left(120^{\circ}\right)$. So, molecule buckles to accommodate.

"chair" cyclohexane

"boat" cyclohexane

"Chair" Cyclohexane

Newman projection
all carbons tetrahedral!

1. No angle strain.
(All angles are 109.5°.)
2. No eclipsing interactions.

So, chair is the most stable
 conformation of cyclohexane.

Axial \& Equatorial Hydrogens on Chair Cyclohexane

Drawing chair cyclohexane:

1. Chair is made of three pairs of parallel lines.
2. Each carbon has one equatorial and one axial hydrogen.
3. Equatorial H's are parallel to chair bonds.
4. Axial H's alternate up and down, same as carbons.

"Boat" Cyclohexane

boat conformation

symmetrical boat

Newman projection

Boat conformers exhibit both steric interactions (from flagpole H's) and eclipsing interactions.

Boat is less stable than chair.

Interconversion of Cyclohexane Conformations

