Electrons and Bonds in Space

- Lewis-dot structures are great for accounting, but don't say much about three-dimensional arrangement of atoms and bonds
- For that, need *molecular orbitals*, built from atomic orbitals.

Molecular Orbitals

- Bonds, electrons between atoms in molecules are described by molecular orbitals.
- These are built from atomic orbitals via orbital mixing.

Rules of orbital mixing:

- Product (mixed) orbitals look like constructive and destructive combinations of starting orbitals, with some distortions.
- You end with the same number of orbitals you started with.
- Degree of mixing depends on orbital overlap, match between orbital energies.

Orbital Mixing is Responsible for Bond Strength

How Do We Use Orbital Mixing to Describe Molecular Structures? What does methane (CH_4) look like? Atomic orbitals: Lewis dot: H Н H С H٠ ۰H C H C[2s] н $C[2p_x], C[2p_y], C[2p_z]$ H н:с:н 2-D: not How do we put all н accurate. these together? 4 x H[1s] **Hybrid Atomic Orbitals** First: "Hybrid orbitals" are formed from s and p orbitals (on one atom) to create all σ bonds and lone pairs. hybridization D С $C[2p_x], C[2p_v], C[2p_z]$ sp3

- Called "*sp*³" because they come from one *s* and three *p*'s;
- Four of them, because we started with four atomic orbitals to make them.

C[2s]

1

Hybrid Atomic Orbitals

First: <u>"Hybrid orbitals</u>" are formed from *s* and *p* orbitals (on one atom) to create all σ bonds and lone pairs.

Valence-Shell Electron Pair Repulsion (VSEPR) Theory Determines Geometry

Methane (CH₄):

- Each σ bonding and nonbonding electron pair repels each other (by electronelectron repulsion);
- These electron pairs organize themselves to maximze distance from each other;
- For CH₄, that geometry is tetrahedral.

