Workshop 1

Drawing Organic Molecules

1. In this exercise, we'll construct molecules from the atoms in the chart below. For each atom, in each empty box: (i) give the electronic configuration; and (ii) give the number of valence electrons available for forming bonds and non-bonding electron pairs.

atom	electronic configuration	\# of valence electrons
H	$1 s^{1}$	1
C		
N		
O		6
S	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$	
Br		

2. Complete the molecular structures below by drawing bonds between neighboring atoms as well as non-bonding electron pairs (or "lone pairs") in each arrangement of atoms. For each arrangement, draw: (i) a Lewis dot structure, in which bonds and lone pairs are all illustrated as dots; and (ii) a Lewis dash-bond structure, with lines for bonds (but still with dots for lone pairs).

Lewis dot structures
ammonia
$\left(\mathrm{NH}_{3}\right)$

H N H

H

Lewis dash-bond structures

- H

H

3. For each of the molecular formulae below, draw two possible Lewis dash-bond structures. Arrange the atoms however you like, but make sure that all atoms obey the octet rule.
$\mathrm{CH}_{3} \mathrm{NO}$

$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}$

For later: Re-draw all of these as line-angle structures, by not drawing H's on carbon or lone pairs on any atom.
4. Starting in Period 3, elements can break the octet rule by having a valence shell of more than 8 electrons. This is possible because the valence shell can involve d orbitals in addition to s - and p-orbitals (which would total only eight). For example, sulfur (S) can use its 6 valence electrons to form 2,4 or even 6 bonds.

For each arrangement of atoms below, draw Lewis dash-bond structures (including lone pairs).

H	H			O
$\mathrm{H} \quad \mathrm{C}$	C	S	H	
H	H		H	O

