Workshop 1 Drawing Organic Molecules

1. In this exercise, we'll construct molecules from the atoms in the chart below. For each atom, in each empty box: (i) give the electronic configuration; and (ii) give the number of valence electrons available for forming bonds and non-bonding electron pairs.

atom	electronic configuration	# of valence electrons
Н	1s ¹	1
С		
N		
0		
S	$1s^22s^22p^63s^23p^4$	6
Br		

2. Complete the molecular structures below by drawing bonds between neighboring atoms as well as non-bonding electron pairs (or "lone pairs") in each arrangement of atoms. For each arrangement, draw: (i) a Lewis *dot* structure, in which bonds and lone pairs are all illustrated as dots; and (ii) a Lewis *dash-bond* structure, with lines for bonds (but still with dots for lone pairs).

	Lewis dot structures	Lewis dash-bond structures
ammonia	H N H	H N H
(NH ₃)	Н	Н

formaldehyde (H₂CO) H C O

H C O H

dibromomethane (CH₂Br₂) H H C Br Br H H C Br Br

3-bromo-1,2-oxazole (C₃H₂NOBr) Br C O O C H H

Br C O
C C

3. For each of the molecular formulae below, draw two possible Lewis dash-bond structures. Arrange the atoms however you like, but make sure that all atoms obey the octet rule.

CH₃NO

For later: Re-draw all of these as line-angle structures, by not drawing H's on carbon or lone pairs on any atom.

4. Starting in Period 3, elements can break the octet rule by having a valence shell of more than 8 electrons. This is possible because the valence shell can involve *d*-orbitals in addition to *s*- and *p*-orbitals (which would total only eight). For example, sulfur (S) can use its 6 valence electrons to form 2, 4 or even 6 bonds.

For each arrangement of atoms below, draw Lewis dash-bond structures (including lone pairs).

ethanethiol (added to natural gas so that it smells; obeys octet rule) sulfuric acid (disobeys octet rule; S has 12 electrons in valence shell)