Exam 1

Answer Key

Exam 1 Mean: 78
Exam 1 Median: 79
Exam 1 St. Dev.: 17

Exam Grade

Exam 1 Solutions

1. a.

Step 1:

Step 2:

Rubric:

Step 1: $\quad 2$ points - proton comes off
2 points - arrow pushing and charges logical (one step)
1 point - intermediate correct
Step 2: 2 points - proton addition
2 points - arrow pushing and charges logical (one step)
1 point - get to product
b.

Bonds made: \begin{tabular}{c}
ΔH_{BDE}

$(\mathrm{kcal} / \mathrm{mol})$

\quad Bonds broken:

ΔH_{BDE}

$(\mathrm{kcal} / \mathrm{mol})$
\end{tabular}

Step 1:	$\begin{aligned} & \mathrm{C} \equiv \mathrm{~N} \\ & \text { (from C=N) } \\ & \mathrm{O}-\mathrm{H} \end{aligned}$	$\begin{gathered} (213 \\ -147 \\ 111 \end{gathered}$		$\begin{aligned} & \mathrm{C}-\mathrm{H} \\ & \mathrm{~N}-\mathrm{O} \end{aligned}$	99 55
	Total ΔH for Step 1:	: -23		/mol)	

Bonds made: \begin{tabular}{c}
ΔH_{BDE}

$(\mathrm{kcal} / \mathrm{mol})$

\quad Bonds broken:

ΔH_{BDE}

$(\mathrm{kcal} / \mathrm{mol})$
\end{tabular}

Step 2:

$\mathrm{O}-\mathrm{H}$	111

Total ΔH for Step 2:

Total ΔH for reaction: $-23 \quad(\mathrm{kcal} / \mathrm{mol})$

Rubric:
Step 1: $\quad 5$ points - bonds made and broken 2 points $-\Delta H$ (correct value and sign)

Step 2: $\quad 5$ points - bonds made and broken 1 point $-\Delta H$ (correct value)

2 points - correct ΔH reaction

* Full credit for answers consistent with part a) (in which the reactant logically goes to product)
c. The equation for K_{M} shows that the higher the value of K_{M}, the less substrate is bound; so both $\mathbf{3}$ and $\mathbf{4}$ must bind the enzyme more weakly than $\mathbf{1 .}$

$$
\Delta \Delta G=-R T \ln \left(K_{\mathrm{n}} / K_{1}\right)=-(0.592 \mathrm{kcal} / \mathrm{mol}) \ln \left(K_{\mathrm{n}} / K_{1}\right)
$$

substrate	K_{M}		
 1	$90 \mu \mathrm{M}$	binds enzyme stronger or weaker than $\mathbf{1 ?}$ (circle one answer for each box)	how much stronger or weaker than 1, in $\mathrm{kcal} / \mathrm{mol}$? (answer to within $1 \mathrm{kcal} / \mathrm{mol})$
 3	$200 \mu \mathrm{M}$	stronger or weaker	$0.47 \mathrm{kcal} / \mathrm{mol}$
 4	2 mM		1.8 kcal/mol

Though I calculated these $\Delta \Delta G$ values, you could have easily estimated them; $K_{\mathrm{M}}(\mathbf{3})$ is much less than an order of magnitude higher than $K_{\mathrm{M}}(\mathbf{1})$, so $\Delta \Delta G$ must be much less than $1.4 \mathrm{kcal} / \mathrm{mol}$ (guess 0.5), and $K_{\mathrm{M}}(4)$ is between one and two orders of magnitude higher than $K_{M}(\mathbf{1})$, so $\Delta \Delta G$ must be between 1.4 and 2.8 $\mathrm{kcal} / \mathrm{mol}$ (guess 2).

Rubric:

2 points for each blank
d \& e.

Lots of possible answers here. We accepted many potential interactions.
A: Based on the binding data (discussed below in (f)), it seems likely that there is some kind of stabilizing hydrogen bonding going on, possibly between aNO_{2} lone-pair and the Thr34L proton. This is ideally positioned to force the $\mathrm{C}-\mathrm{H}$ to be broken near the mouth of the pocket, where the carboxylate base is.

B: The substrate is an electron-poor aromatic (because of the electronwithdrawing character of the $-\mathrm{NO}_{2}$ group), and should stack well on the large aromatic face of $\operatorname{Trp} 91 \mathrm{~L}$. You could potentially draw arene-arene interactions with many of the surrounding aromatic residues.

C: Actually, simple hydrophobic effects probably also play a role in allowing the enzyme to capture substrate. The hydrophobic pocket (with lots of hydrophobic amino acids) is right at the water's edge, and would much rather interact with $\mathbf{1}$ than with water molecules.

Some things we were more skeptical about:
H-bonding to Glu50H: C-H is not an H -bond donor.
H-bonding to Tyr32L, Tyr100H, Trp33H, Trp91L: These are pointed out of the pocket towards water environment. Will not be as available for H -bonding. Difficult to imagine how molecule could be oriented into pocket by one of these outward-facing contacts.

Rubric:

d) 4 points - placement of molecule in pocket

1 point - molecule placed with realistic interactions
e) 4 points each - interaction discussed

2 points each - interaction logical
f. Referring to the letters I used in parts (d) \& (e):

Enzyme• 3 should still exhibit the hydrophobic interactions (\boldsymbol{C}) shown above in part (d). In addition, fluorine atoms are electronegative, and so the substrate ring should still be electron-poor and arene stacking (B) should still occur for 3 just as it did for 1. However, molecule 3 lacks an electron-pair donor, and so it should not participate in H-bonding (A) with Thr34L. The binding energy in enzyme•3 should be weaker than enzyme $\cdot 1$ by one H -bond ($0.5-1.5 \mathrm{kcal} / \mathrm{mol}$).

Enzyme•4, again, should show the same hydrophobic interactions (\boldsymbol{C}) with the pocket. However, the ring in $\mathbf{4}$ doesn't have any electron-withdrawing groups or H-bond acceptors. So, binding energy in enzyme $\bullet 4$ should be weaker than in enzyme $\mathbf{1}$ by an H -bond and an arene-arene interaction (though some edge-toface arene interactions probably still take place).

Rubric:

2 points each - differences
2 points each - similarities
2 points when answer logically makes sense with d) and e)
2. a. The first few kinetic runs $\left([\mathbf{B}]_{0}=10 \mathrm{mM}, 5 \mathrm{mM}, 2 \mathrm{mM}\right)$ were all performed under pseudo-first order conditions, with $[\mathbf{B}]_{0} \gg[\mathbf{A}]_{0}$, such that the concentration of \mathbf{B} effectively did not change over the course of the reaction. For pseudo-first order kinetics, it is possible to write a rate expression

$$
\frac{-\partial[\mathrm{A}]}{\partial t}=k_{\mathrm{r}}[\mathrm{~A}]^{1}[\mathrm{~B}]^{1}=k_{\mathrm{obs}}[\mathrm{~A}], \text { where } k_{\mathrm{obs}}=k_{\mathrm{r}}[\mathrm{~B}] .
$$

So, $\boldsymbol{x}=\mathbf{1}, \boldsymbol{y}=\mathbf{1}$. The integrated rate law for this expression would be

$$
[\mathrm{A}]_{t}=[\mathrm{A}]_{0} \mathrm{e}^{-k_{\text {obs }} t}
$$

and so the exponent C determined from each of the curve fits is actually a k_{obs}. The variation of $k_{\text {obs }}$ with [B] gives k_{r} :

$$
\begin{gathered}
k_{r}=\frac{\Delta k_{\mathrm{obs}}}{\Delta[\mathrm{~B}]}=\frac{6.4 \times 10^{-6} / \mathrm{sec}-3.2 \times 10^{-6} / \mathrm{sec}}{10 \mathrm{mM}-5 \mathrm{mM}} \\
k_{r}=6.4 \times 10^{-4} \mathrm{M}^{-1} \mathrm{sec}^{-1} .
\end{gathered}
$$

Rubric:
2 points each - correct x and y
4 points - correct k_{r}
2 points - correct units
b. For these last couple of runs, $[\mathbf{B}]_{0}$ was not that much larger than $[\mathbf{A}]_{0}$, and as a result the reaction would not have followed pseudo-first order kinetics. Under these conditions, the reaction would be more likely to follow normal second-order kinetics, where

$$
[\mathrm{A}]_{t}=\frac{\Delta_{0}[\mathrm{~A}]_{0}}{[\mathrm{~B}]_{0} e^{\Delta_{0} k_{t} t}-[\mathrm{A}]_{0}}, \quad \Delta_{0}=[\mathrm{B}]_{0}-[\mathrm{A}]_{0}
$$

We derived this equation in lecture for a second-order process with reactants \mathbf{A} and \mathbf{B}.

Rubric:

6 points - correct equation
1 point - define Δ_{0}
c. Writing the rate expression $-\partial[\mathrm{B}] / \partial \mathrm{t}$ as the sum of the two processes,

$$
\frac{-\partial[\mathrm{B}]}{\partial t}=k_{r}[\mathrm{~B}][\mathrm{A}]+k_{\mathrm{H}}[\mathrm{~B}]=[\mathrm{B}]\left(k_{r}[\mathrm{~A}]+k_{\mathrm{H}}\right)
$$

As we did in class for simple second-order kinetics, we need to express [A] in terms of $[B]$. The number of molecules of A consumed during the reaction is exactly equal to the number of molecules of B consumed. So,

$$
\begin{gathered}
{[\mathrm{A}]_{0}-[\mathrm{A}]_{t}=[\mathrm{B}]_{0}-[\mathrm{B}]_{t}} \\
{[\mathrm{~A}]=[\mathrm{A}]_{0}-[\mathrm{B}]_{0}+[\mathrm{B}]=\Delta_{0}+[\mathrm{B}], \text { where } \Delta_{0}=[\mathrm{A}]_{0}-[\mathrm{B}]_{0} .}
\end{gathered}
$$

Note that this is actually the opposite of how we defined Δ_{0} in class (as $[\mathrm{B}]_{0}-$ $[\mathrm{A}]_{0}$), because in lecture we were putting everything in terms of $[\mathrm{A}]$ rather than [B]. Substituting this expression for [A] into the rate equation,

$$
\frac{-\partial[\mathrm{B}]}{\partial t}=[\mathrm{B}]\left(k_{r}\left(\Delta_{0}+[\mathrm{B}]\right)+k_{\mathrm{H}}\right)=[\mathrm{B}]\left(k_{r} \Delta_{0}+k_{\mathrm{H}}+k_{r}[\mathrm{~B}]\right)
$$

Rubric:

1 point - half-expression containing $k_{H}[\mathrm{~B}]$
1 point - half-expression containing $k_{\mathrm{r}}[\mathrm{B}][\mathrm{A}]$
1 point - substituting for [A]
5 points - correct answer
(-1 point only for trivial math errors)
d. Clearly the hardest question on the exam. Rearranging and integrating the answer to (c),

$$
\frac{-\partial[\mathrm{B}]}{[\mathrm{B}]\left(k_{r} \Delta_{0}+k_{\mathrm{H}}+k_{r}[\mathrm{~B}]\right)}=\partial t
$$

$$
\int_{[\mathrm{B}]_{0}}^{[\mathrm{B}]_{t}} \frac{\partial[\mathrm{~B}]}{[\mathrm{B}]\left(k_{r} \Delta_{0}+k_{\mathrm{H}}+k_{r}[\mathrm{~B}]\right)}=-\int_{0}^{t} \partial t
$$

For this, we can use the standard integral form in the problem,

$$
\begin{gathered}
\int \frac{d x}{x(a+b x)}=-\frac{1}{a} \ln \frac{a+b x}{x}, \quad \text { where } x=[\mathrm{B}], a=\left(k_{r} \Delta_{0}+k_{\mathrm{H}}\right), b=k_{\mathrm{r}} ; \\
-\left.\frac{1}{k_{r} \Delta_{0}+k_{\mathrm{H}}} \ln \left(\frac{k_{r} \Delta_{0}+k_{\mathrm{H}}+k_{r}[\mathrm{~B}]}{[\mathrm{B}]}\right)\right|_{[\mathrm{B}]} ^{[\mathrm{B}]}=-t \\
\ln \left(\frac{k_{r} \Delta_{0}+k_{\mathrm{H}}+k_{r}[\mathrm{~B}]_{t}}{[\mathrm{~B}]_{t}}\right)-\ln \left(\frac{k_{r} \Delta_{0}+k_{\mathrm{H}}+k_{r}[\mathrm{~B}]_{0}}{[\mathrm{~B}]_{0}}\right)=\left(k_{r} \Delta_{0}+k_{\mathrm{H}}\right) t
\end{gathered}
$$

Now our goal is to solve for $[\mathrm{B}]_{t}$. Making each side a power of e,

$$
\frac{[\mathrm{B}]_{0}\left(k_{r} \Delta_{0}+k_{\mathrm{H}}+k_{r}[\mathrm{~B}]_{t}\right)}{[\mathrm{B}]_{t}\left(k_{r} \Delta_{0}+k_{\mathrm{H}}+k_{r}[\mathrm{~B}]_{0}\right)}=e^{\left(k_{r} \Delta_{0}+k_{\mathrm{H}}\right) t}
$$

$$
[\mathrm{B}]_{0}\left(k_{r} \Delta_{0}+k_{\mathrm{H}}+k_{r}[\mathrm{~B}]_{t}\right)=e^{\left(k_{r} \Delta_{0}+k_{\mathrm{H}}\right) t}[\mathrm{~B}]_{t}\left(k_{r} \Delta_{0}+k_{\mathrm{H}}+k_{r}[\mathrm{~B}]_{0}\right)
$$

$$
[\mathrm{B}]_{0}\left(k_{r} \Delta_{0}+k_{\mathrm{H}}\right)=e^{\left(k_{r} \Delta_{0}+k_{H}\right) t}[\mathrm{~B}]_{t}\left(k_{r} \Delta_{0}+k_{\mathrm{H}}+k_{r}[\mathrm{~B}]_{0}\right)-k_{r}[\mathrm{~B}]_{t}[\mathrm{~B}]_{0}
$$

$$
[\mathrm{B}]_{0}\left(k_{r} \Delta_{0}+k_{\mathrm{H}}\right)=[\mathrm{B}]_{t}\left(e^{\left(k_{r} \Delta_{0}+k_{\mathrm{H}}\right) t}\left(k_{r} \Delta_{0}+k_{\mathrm{H}}+k_{r}[\mathrm{~B}]_{0}\right)-k_{r}[\mathrm{~B}]_{0}\right)
$$

$$
[\mathrm{B}]_{t}=\frac{[\mathrm{B}]_{0}\left(k_{r} \Delta_{0}+k_{\mathrm{H}}\right)}{e^{\left(k_{r} \Delta_{0}+k_{\mathrm{H}}\right) t}\left(k_{r} \Delta_{0}+k_{\mathrm{H}}+k_{\mathrm{r}}[\mathrm{~B}]_{0}\right)-k_{r}[\mathrm{~B}]_{0}}
$$

Rubric for 2(d):
5 points - Setting up integral from part (c), with [B] on one side, t on other
3 points - Integrating over $[B]_{t}->[B]_{0}, t->0$
3 points - Solving for $[B]_{t}$
4 points - Correct answer

