Exam 1
 Answer Key

Exam 1 Mean: 82
Exam 1 Median: 86
Exam 1 St. Dev.: 13

Exam 1 Solutions

1. a.

$$
\begin{aligned}
\Delta G_{\text {up/down }} & =-R T \ln K_{\text {up } / \text { down }} \\
& =-(1.99 \mathrm{cal} \mathrm{~mol} \mathrm{~K})(298 \mathrm{~K}) \ln (2.6) \\
& =-0.57 \mathrm{kcal} / \mathrm{mol}
\end{aligned}
$$

So, the complex with $\mathbf{2}_{\mathbf{u p}}$ is more stable than the complex with $\mathbf{2}_{\text {down }}$ by $\underline{\mathbf{0 . 5 7}}$ kcal/mol.

Rubric:
3 points for "more stable";
4 points for any ΔG between 0.5 and $0.7 \mathrm{kcal} / \mathrm{mol}$.
2 points partial credit for any attempt to calculate Gibbs free energy.
b. $\mathbf{2 b}$ already exhibits a preference for $\mathbf{2} \mathbf{b}_{\text {up }}$ over $\mathbf{2} \mathbf{b}_{\text {down }}$, in the absence of any weak interaction, for some reason-maybe the molecule fits better in the cavity up than down, or maybe there's some interaction between 2 and the cavity we haven't imagined. In any case, any preference that we observe for any $\mathbf{2 b} \mathbf{- 3}$ pair will include this background energetic component, and we'll need to subtract it out.

So, for $(\mathbf{1})_{2} \cdot \mathbf{2 b} \cdot \mathbf{3 b}$,

$$
\begin{aligned}
\Delta G_{\text {up/down }} & =-R T \ln K_{\text {up } / \text { down }} \\
& =-(1.99 \mathrm{cal} \mathrm{~mol} \mathrm{~K})(298 \mathrm{~K}) \ln (8.9) \\
& =-1.3 \mathrm{kcal} / \mathrm{mol}
\end{aligned}
$$

Meaning

$$
\begin{aligned}
\text { "BDE" }{ }^{\text {-bond }} & =(1.3 \mathrm{kcal} / \mathrm{mol})_{3 \triangleright}-(0.6 \mathrm{kcal} / \mathrm{mol})_{\text {background }} \\
& =0.7 \mathrm{kcal} / \mathrm{mol} .
\end{aligned}
$$

Rubric:
5 points for calculation.
2 points partial credit for including $K=8.9$ in calculation (even if correction for background is ignored);
2 points partial credit for correcting for 3a preference;
1 point for correct answer.
3 points for explanation of correction factor.
c. For a hydrogen bond between species in a noninteracting solvent like mesitylene (which is like benzene or toluene), inside a capsule that is intended to further isolate the molecules, $0.7 \mathrm{kcal} / \mathrm{mol}$ seems awfully low. For comparison, MPOC (p. 173) lists H -bond strengths in noninteracting CCl_{4} as being between 3 and 5 $\mathrm{kcal} / \mathrm{mol}$. We discussed in class that H-bonds in water are "weaker" (have a smaller ΔG for breaking)—between 0.5 and $1.5 \mathrm{kcal} / \mathrm{mol}$-because of competition for the H -bond site by water. So a strength of $0.7 \mathrm{kcal} / \mathrm{mol}$ in a noncompeting environment is surprisingly smaller than what one would expect.

In principle, there could be a number of factors that could affect the formation of an H -bond either between the propanol H and the toluidine N , or between the propanol O and the toluidine H . (The problem doesn't indicate
 which is formed, although the model on page 2 makes it look as though the H -bond is between toluidine N and propanol H .) One possibility is that there is a competition, maybe by the ring of amides around the middle of the molecule, for the 1-propanol donor or acceptor. (Shown on the left; here, if $\mathbf{2 b}$ were pointed down, there would still be stabilizing H -bonds between 3b and the cavity.)

Alternately, maybe the shape of the cavity forces the molecules into a conformation that prevents the H -donor and acceptor from adopting the optimum, co-linear orientation (that would normally maximize H-bond strength); maybe the cavity squeezes the OH of the propanol down too far or too close to appropriately bond with $\mathbf{2 b}$.

Rubric:

3 points for "smaller" than expected.
7 points for discussion of at least one factor that could lead to K being smaller.
(Partial credit items?)
d. Lots of possible answers here. We accepted many potential orientations and interactions, including interactions between $\mathbf{2 b}$ and $\mathbf{C s}^{+}$as well as interactions between either molecule and the host:

$(1)_{2} \cdot 2 b_{u p} \cdot \mathrm{Cs}^{+}$

(1) $)_{2} \cdot \mathbf{2 b}$ down $\cdot \mathbf{C s}^{+}$
$\mathbf{2 b} \cdot \mathbf{C s}^{+}$interactions:
\boldsymbol{A} : Lewis acid-base between toluidine N and Cs^{+}. Not going to be very strong, because the toluidine N electrons are already conjugated with the aromatic ring, but it will happen. Makes $K_{\text {up/down }}$ larger.

B: Cation- π interactions between the toluidine ring and Cs^{+}. Will occur more for $\mathbf{2} \mathbf{b}_{\text {down }}$ than $\mathbf{2} \mathbf{b}_{\text {up }}$ because aromatic ring is closer (in my opinion). So, makes $K_{\text {up/down }}$ smaller.

Confounding, (1) $)_{2} \cdot \mathbf{C s}^{+}$and (1) $)_{2} \cdot \mathbf{2 b}$ interactions:
C: H-bonding between the host and toluidine $\mathrm{N}-\mathrm{H}$. I think there are more H -bond acceptors near the center of the cage than near the ends, so I would guess Hbonding would favor $\mathbf{2}_{\text {up }}$ over $\mathbf{2}_{\text {down }}$ (and make $K_{\text {up/down }} \underline{\text { larger) }}$), but you could probably argue it the other way as well.

D: Cation- π interactions between aromatic groups in the host and Cs^{+}. This is a weak interaction, but because it would occur for either orientation of $\mathbf{2 b}$, it isn't clear how this would bias K either way. We gave partial credit for this answer.
\boldsymbol{E} : Lewis acid-base between host donor atoms and Cs^{+}. As with \boldsymbol{D} above, because this would also occur for either orientation of $\mathbf{2 b}$, it isn't clear how this interaction would bias K either way. We gave partial credit for this answer.
$\boldsymbol{F}: \pi-\pi$ interactions between the host and the aromatic toluidine ring. Again, this would probably occur for either orientation of $\mathbf{2 b}$, and shouldn't bias K either way. We gave partial credit for this answer.

Rubric:
5 points for each weak interaction:
2 points for drawing an arrow to any viable noncovalent interaction, even one that doesn't influence K.
1 point for naming it in the box.
2 points for accurately identifying its influence on K. If you chose an interaction that shouldn't have an influence on K, you cannot get these points.
2. a. Each of the graphs essentially reduces the expression

$$
\text { rate }=-\frac{\partial[4]}{\partial t}=k[4]^{x}[\mathrm{PhCHO}]^{y}\left[\mathrm{NR}_{3}\right]^{z}
$$

to

One way that we discussed in class to evaluate k, x, y and z is to set up systems of simultaneous equations. But, before we do that, I think it's fairly obvious that the data shown in the x and z graphs above look like straight lines-i.e., graphs of the form rate $=k_{\text {obs }}[4]$ and rate $=k_{\text {obs }}\left[\mathbf{N R}_{3}\right]$, where x and z both $=1$ (one). You can do simultaneous equations for these if you want, but you really don't need to.

The y graph, on the other hand, is nonlinear and needs some mathematical analysis.

$$
\begin{aligned}
& \frac{\text { rate }_{1}}{\text { rate }_{2}}=\frac{[\mathrm{PhCHO}]_{1}^{y}}{[\mathrm{PhCHO}]_{2}^{y}} \\
&=\left(\frac{[\mathrm{PhCHO}]_{1}}{[\mathrm{PhCHO}]_{2}}\right)^{y} \\
& \frac{0.0082}{0.0020}=\left(\frac{0.82}{0.41}\right)^{y}
\end{aligned}
$$

$$
4=(2)^{y}
$$

$$
y=2 .
$$

Substituting concentrations, x, y and z into the instantaneous rate equation for the upper data point circled above,

$$
\begin{aligned}
& r a t e=k[4]^{x}[\mathrm{PhCHO}]^{y}\left[\mathrm{NR}_{3}\right]^{z} \\
& k=\frac{r a t e}{[4]^{x}[\mathrm{PhCHO}]^{y}\left[\mathrm{NR}_{3}\right]^{z}} \\
&=\frac{0.0082 \mathrm{M} / \mathrm{sec}}{(0.84 \mathrm{M})(0.82 \mathrm{M})^{2}(0.27 \mathrm{M})} \\
& k=\begin{array}{r}
0.054 \mathrm{M}^{-3} \mathrm{sec}^{-1} \\
x
\end{array} \\
& y=\square
\end{aligned}
$$

Rubric:

2 points each for x, y and $z .(+/-20 \%) .6$ total here.
(So x, z can be between 0.8-1.2, y can be between 1.6-2.4.)
4 points for k.
2 points for units-must be $\sec ^{-1} \mathrm{M}^{-(x+y+z-1)}$ or internally consistent. 2 points for correct value or internally consistent calculation.
b. Mechanism (i):

Mechanism (ii):

Then,

OR

I think the second of these two options is less likely, because it isn't likely that the protonated aldehyde would be observed in concentrated (0.27 M) trialkylamine base.

Rubric:
5 points for Mechanism (i).
2 points partial credit for something intramolecular. Very unlikely, but if you did the accounting correct, we'll give it to you.
10 points for Mechanism (ii).
2 points for initial addition of aldehyde.
3 points for subsequent intramolecular elimination.
5 points for loss of aldehyde and proton transfers.
4 of these 5 points if protonated species formed in presence of $N R_{3}$ base.
c. The slow (elementary) step of mechanism (i) involves reaction of 6 with a molecule of $\mathbf{N R}_{3}$; the slow step of mechanism (ii) involves reaction of $\mathbf{6}$ with a molecule of PhCHO. A single rate expression that combines these two steps would be

$$
\text { rate }=-\frac{\partial[\mathbf{6}]}{\partial t}=k_{1}[\mathbf{6}]\left[\mathrm{NR}_{3}\right]+k_{2}[\mathbf{6}][\mathrm{PhCHO}]
$$

Rubric:

5 points for each part of expression.
2 points partial for " $\mathrm{k}_{1}[6]$ (anything)".
2 points partial for " $\mathrm{k}_{2}[6]$ (anything)".
Answers that are incorrect, but consistent with mechanisms drawn in (b), receive full credit.
d. Exam starts to get a little tricky here. There are three variables in the expression above, and we want to get rid of two of them. We might try to express either, or both, of the variables in terms of [6] by using a Δ_{0}-like substitution (as we did in class for second-order kinetics), but all three variables are dependent. In other words, we can't define $\left[\mathbf{N R}_{3}\right]$ in terms of how much $\mathbf{6}$ is consumed, because some of that $\mathbf{6}$ will have been consumed by reacting with PhCHO. This is true even if we made a pseudo-first-order assumption for one of the variables-the second variable still couldn't be expressed in terms of $\mathbf{6}$. So, as a result, we have to do a pseudo-order approximation on both $\left[\mathbf{N R}_{3}\right]$ and $[\mathbf{P h C H O}]$.

To do this experiment, we would have to run kinetics experiments under an excess of both $\mathbf{N R}_{\mathbf{3}}$ and $\mathbf{P h C H O}$, such that both $\left[\mathbf{N R}_{3}\right]$ and $[\mathbf{P h C H O}$] were constant. Under those circumstances,

$$
\begin{aligned}
& \text { rate }=-\frac{\partial[\mathbf{6}]}{\partial t}=k_{\text {obs }}[\mathbf{6}] \\
& k_{\text {obs }}=k_{1}\left[\mathbf{N R}_{3}\right]+k_{2}[\mathbf{P h C H O}]
\end{aligned}
$$

Integration of the top equation is easy; it's just the first-order rate law we have dealt with many times.

$$
\frac{\partial[6]}{[6]}=-k_{\text {obs }} \partial t
$$

$$
\begin{aligned}
& \int_{[6]_{\mathrm{l}}}^{[6] 6]} \frac{\partial 6]}{[6]}=-\int_{0}^{t} k_{\text {obs }} \partial t \\
& {[6]_{t}=[6]_{0} e^{-k_{\text {oos }} t}}
\end{aligned}
$$

Rubric:

5 points for any pseudo-order experiment (where the concentration of at least one species is large enough that it doesn't vary).
5 points for expression of re-evaluating instantaneous from part (c) consistent with this approximation.
5 points for integrating correctly.
-1 point for trivial math errors,
-2 points for small conceptual errors. (not integrating over space, etc.)
5 points for $[6]_{t}$ expression that it internally consistent with (c).
e. The other part of a pseudo-order experiment is to set up multiple rate experiments that measure $k_{\text {obs }}$, and then use this data to determine component k 's. If you set up your answer the way I did, that could mean either or both of two sets of experiments:
one in which [$\mathbf{P h C H O}$] is varied and $\left[\mathrm{NR}_{3}\right.$] is held constant to measure k_{2} as slope and $k_{1}\left[\mathbf{N R}_{3}\right]$ as intercept (which yields k_{1} by dividing out the known constant concentration $\left[\mathbf{N R}_{3}\right]$; see graph on the right);
and/or the other in which $\left[\mathbf{N R}_{3}\right]$ is varied and $[\mathbf{P h C H O}]$ is held constant to measure k_{1} as slope and $k_{2}[\mathbf{P h C H O}$] as intercept (which yields k_{2} by dividing out the known constant concentration [PhCHO]).

[PhCHO]

Regardless of how you answered the previous parts, however, your answer to this question has to contain a set of experiments in which k_{obs} is varied for different concentrations of a pseudo-order component, and then that data plotted to extract a slope and intercept that correspond to k_{1} and k_{2}.

Rubric:

5 points for describing how $k_{\text {obs }}$ would be measured for different concentrations of excess reactant.
5 points for describing how plot of $k_{\text {obs }}$ vs. reactant would yield some answers.

