Exam 3

Answer Key

Exam 1 Mean: 75
Exam 1 Median: 74
Exam 1 St. Dev.: 13

MIDTERM EXAM 3
ANSWER KEY

1, a)

CRITICAL FEATURES:

- CONNECTIVITY (2 PTS)
- nucleopitile, leaving group
(PARTIAL BOND TO OXYGEN NOT GRADED)
- deformation at C_{1} (DPT)
- partial charge (ip)
\therefore (AGAIN, OXYGEN NOT GRADED):
b) THE C $C-{ }^{14 / 15} N$ BOND IS BROKEN IN THE TRANSITION STATE, SO THIS PROBLEM INVOLVES A PRIMARY

ISOTOPE EFFECT. IN THE GROUND (BOUND) STATE, THE HEAVIER REDUCED MASS HAS A LOWER ZERO-POINT ENERGY, BUT IN THE EXCITED STATE, EYRINA THEORY SAYS $V=0, C-{ }^{14} N$ \& $C^{-15} N$ ENERGIES ARE EQUAL.

c)

$$
\begin{aligned}
\frac{K_{14} N}{K_{15}}=\frac{e^{-\Delta G_{14}^{\prime} N / R T}}{e^{-\Delta G_{15 N} / R T}} & =e^{\frac{\Delta G_{15 N}-\Delta G_{14}^{7} N}{R T}} \\
& =e^{\frac{\Delta 2 P E\left(C-{ }^{14 / 15} N\right)}{R T}} \\
2 P E\left(C-{ }^{14} N\right) & =\frac{1}{2} h(C) \nu ; \nu\left(C-{ }^{14} N\right)=1080 \mathrm{~cm}^{-1} \\
11 & =6.46 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

$$
\begin{aligned}
& \nu\left(C-{ }^{15} N\right)=\left[\nu\left(C-{ }^{14} N\right)\right] \frac{\nu\left(C-{ }^{15} N\right)}{\nu\left(C-{ }^{14} N\right)}=\left[\nu\left(C-{ }^{14} N\right)\right] \sqrt{\frac{\mu_{C}-{ }^{14} N}{\mu_{C}-15} N} \\
& \sqrt{\frac{\mu_{c-14}{ }^{14}}{\mu_{c-}{ }^{15} N}}=\sqrt{\frac{\frac{(12)(14)}{12+14}}{\frac{(12)(15)}{12+15}}}=\sqrt{0.969}=0.984 \\
& V\left(C-{ }^{15} N\right)=(0.988) V\left(C-{ }^{14} N\right) \\
& =1062 \mathrm{~cm}^{-1} \\
& \operatorname{ZPE}\left(\mathrm{C}-{ }^{15} \mathrm{~N}\right)=6.36 \mathrm{~kJ} / \mathrm{mol} \\
& \triangle Z P E=0.10 \mathrm{~kJ} / \mathrm{mol} \\
& \left(\frac{k_{14} \mathrm{~N}}{k_{15}}\right)_{\text {max }}=e^{\frac{0.10 \frac{k J}{m o l}}{R T}}=1.041 \text {. }
\end{aligned}
$$

\{10 PTS fOR "1.04", "'.O40", "1.041" OR "1.042". OR $\left\{\begin{array}{l}5 \text { PTS FOR CORRECT ANSWER BETWEEN } 1.030 \text { AND } 1 . \\ 2 \text { PTS FOR CALCULATING } \nu_{\text {PE FROM }} \text { REDUCED MASS } \\ 1 \text { PT FOR CALCULATING REDUCED MASSES CORRECTLY }\end{array}\right.$ 1 PT FOR CALCULATING ZPE'S FROM $\nu_{\text {PE }}$ 1 PT FOR CALCULATING $\frac{K_{14 N}}{K, 5 N}$ FROM $e^{\triangle Z P E / R T}$.
d) i. SNI. THE REST OF THE PROBLEM EXPLAINS WHY. 5 points.
d) $i i$. If You chose S_{N} I (THE CORRECT ANSWER) in (i),

AT TRANSITION STATE, EMPTY CATIONIC P-ORBITAL HASN'T FULLY FORMED FROM σ^{*} ANTIBONDINA ORBITAL, AND THERE STILL MORE EMPTY ORBITAL DENSITY BELOW THE C, THAN ABOVE IT. So, THERE IS GREATER HYPERCONJUGATION BETWEEN $H_{2 R}$ AND σ^{*} / p THAN $H_{2 S}$ AND σ^{*} / ρ.

AS A RESULT, $\mathrm{C}-\mathrm{H}_{2 R}$ is WEAKER IN TRANSITIOW STATE THAN $\mathrm{C}_{2}-\mathrm{H}_{2}$, AND SHOULD have lower VIBRATIONAL FREQUENCY.

5 POMS FOR HYPERCONJUGATION / OVERLAP OF $C-H_{2 R}$ WITH σ^{*} / P OF LEAVING GROUP

5 POINTS FOR STRESSING BETTER SPATIAL OVERLAP FOR $\mathrm{C}-\mathrm{H}_{2 \mathrm{R}}$ THAN $\mathrm{C}-\mathrm{H}_{2 S}$

5 POINTS FOR CONNECTING TITIS TO DRAWING OF TS. I 15 POINTS TOTAL.

If you chose $S_{N} 2$ in (i), you HAVE A muCh HARDER ARGUMENT TO MAKE; YOU NEED TO EXPLAIN WHY, GEOMETRICALLY, $C-H_{2 R}$ INTERACTS W/ TRANSITION STATE MORE THAN $\mathrm{C}_{-} \mathrm{H}_{2}$. SINCE $S_{N} 2$ TRANSITION STATE IS SYMMETRIC (ANTIPERIPLANAR), DON'T KNOW HOW YOU MIGHT DO THIS, BUT FOR ANY ANSWER, i 5 POINTS FOR STRESSING SPATIAL DIFFERENCE BETWEEN C-H2R \& $\mathrm{C}-\mathrm{H}_{2 S}$ RELATED TO C_{1} BUT C_{1} MUST BE ANTTPERIPLANAR

5 points for relating above to orbital interaction / FREQUENG-RELATED DIFFERENCE;'

5 POINTS FOR POINTING DIFFERENCE OUT ON DRAWING - BUT DRAWING MUST BE CORRECT.
d) icc. HYPERCONSUGATIVE EFFECT WEAKENS $C-H_{2 R}$ MORE THAN $\mathrm{C}-\mathrm{H}_{2 S}$ in TRANSITION STATE, BUT NO INTERACTION IN GROUND STATE. 30 GROUND STATE CH VIBRATIONAL WELLS SHOULD BE THE SAME FOR $H_{2 R} \& H_{2 S}$, BUT TRANSITION-STATE $C-H_{2 R}$ WELL WILL BE BROADER.

3 POINTS FOR GRAPHS HAVING SAME $\triangle A C K B O N E ~ T R A C E, ~$
3 POINTS FOR SECONDARY KI (WELLS DRAWN OUT OF PLANE)
3 POINTS FOR GRAPHS HAVING SAME GROUND -STATE ENERGY, DIAGRAM, OR FOR FOLLOWING EXPLICIT EXPLANATION FROM PART (ii) ABOUT WHY DIFFERENT.

3 POINTS FOR TRANSITION-STATE WELLS BROADER THAN GROUND-JTATE WELLS.

4 POINTS FOR $2 R$ TRANSITION STATE WELL BROADER THAN $2 S$ TRANSITION STATE.

2 POINTS FOR ENERGY LEVELS (BOTH LOWER IN ZR WELL THAN ZS;
2 POINTS FOR $\triangle Z P E_{2 R}<\triangle Z P E_{2 S}$ ($2 R$ LEVELS CLOSER THAN IS LEVENS) in TRANSITION STATEE.
2. a) Tunneling effects are possible for any reaction step in which a very small motion of a hydrogen atom occurs and nothing else. Under these circumstances, H can tunnel through the barrier to motion along the reaction coordinate instead of passing over it. In this reaction,

Step A doesn’t involve hydrogen. No tunneling effect possible.
Step B involves H motion, but the H_{2} comes from a long way away. Tunneling is unlikely.

Step C splits the H-H bond. In the product, the H’s don't look much farther away from each other than they were in the starting material. Tunneling in this step is likely.

Step D moves an H atom to carbon, with no other bonds changing. There are some other very small motions in the molecule, but I would say tunneling is possible here.

Step E involves solvent, not H motion. No tunneling possible.
Step F involves H motion, but there is a lot of other motion here too. Tunneling seems possible, but not likely, here.

Step G involves solvent motion. No tunneling possible.

Rubric for 2(a):
5 points for \mathbf{C}.
5 points for \mathbf{D}.
3 points for \mathbf{F}.
b) Deuterium tunnels more slowly than hydrogen. As a result, $\boldsymbol{k}_{\mathbf{H} 2} / \mathbf{k}_{\mathbf{D} 2}$ should always be greater than one.

Rubric for 2(b):
4 points for each box.
c) Using HD instead of D_{2} as a reactant introduces an interesting new variable for each step of the reaction: If there is a choice between H or D moving to make product, which one moves, and what products are formed?

Step C:

C. \downarrow

2a

2b

In the case of step \mathbf{C}, both atoms move, and it is likely that the pathways are not distiniguished by the isotope orientation at the beginning. So, 2a/2b=1.

Step D:

D
D

$2 a$

2b

In the case of step \mathbf{D}, only one H/D moves. If the H moves, $\mathbf{2 a}$ is produced; if the D moves, $\mathbf{2 b}$ is produced. H tunnels faster than D , so $\mathbf{2 a} / \mathbf{2 b}>\mathbf{1}$.

Rubric for 2(c):
6 points for each box.

