Approximations in Complex Kinetics

$$\mathbf{A} + \mathbf{B} \stackrel{\mathbf{k}_{1}}{\underset{\mathbf{k}_{1}}{\longrightarrow}} \mathbf{C} \qquad \frac{\partial [\mathbf{A}]}{\partial t} = -k_{1}[\mathbf{A}][\mathbf{B}] + k_{-1}[\mathbf{C}]$$
$$\mathbf{C} \stackrel{\mathbf{k}_{2}}{\longrightarrow} \mathbf{P} \qquad \frac{\partial [\mathbf{P}]}{\partial t} = k_{2}[\mathbf{C}]$$
$$\frac{\partial [\mathbf{C}]}{\partial t} = k_{1}[\mathbf{A}][\mathbf{B}] - k_{-1}[\mathbf{C}] - k_{2}[\mathbf{C}]$$

All of these expressions contain [C], which is often transient and unmeasurable.How do we deal with [C]?

The Steady-State Approximation

A simplification:

 $[Int]_{ss} = \frac{\Sigma \text{ rates that create Int}}{\Sigma \text{ rates (omitting [Int]) that}}$

so, for previous problem,

 $[Tr^+]_{ss} = \frac{k_1[TrCl]}{k_{-1}[Cl^-] + k_2[EtS^-]}$

Steady-State and Pre-Equilibrium Assumptions

Steady-State:

Pre-Equilibrium:

Differ only in the way second step is treated.

Discussion Question

The nucleophilic conversion of trityl chloride (TrCl) to trityl ethyl thioether (TrSEt) occurs by a dissociative, S_N1 mechanism:

In this problem, we'll construct an integrated rate law for ∂ [TrCl]/ ∂t .

a. Write basic (non-integrated) rate expressions for both ∂ [TrCl]/ ∂t and ∂ [Tr⁺]/ ∂t , in terms of any variables you want. (I.e., don't worry about integrating yet.) Make sure you include both processes that consume the species as well as those that create it.

$$\frac{\partial [\mathsf{Tr}\mathsf{CI}]}{\partial t} =$$

$$\frac{\partial [\mathsf{Tr}^+]}{\partial t} =$$

b. Both of your expressions should contain $[Tr^+]$; trityl cation is a reactive intermediate, and its concentration can't be characterized, so we'll have to eliminate this term. We'll assume it's a steady-state intermediate, and that $\partial [Tr^+]/\partial t = 0$. Given this, use your answer to part (a) to solve for $[Tr^+]_{ss}$.

 $[Tr^+]_{ss} =$

c. Plug this into your expression for ∂ [TrCl]/ ∂t from (a), and simplify as much as you can to end up with a new expressions for ∂ [TrCl]/ ∂t .

$$\frac{\partial [\mathsf{Tr}\mathsf{CI}]}{\partial t} =$$

d. EtS⁻ is a better nucleophile than Cl⁻, so k_2 [EtS⁻] should always be greater than k_1 [Cl⁻] if even a small excess of EtS⁻ is used. How does this affect your expression in (c)? What is the order of this reaction in [TrCl] and [Cl⁻]?

e. On your own: How would the expression for ∂ [TrSEt]/ ∂t compare to the one for ∂ [TrCl]/ ∂t in (c)?

f. On your own: How would the expressions be different if you made a preequilibrium assumption rather than a steady-state assumption?

Chemistry 5011/8011

Discussion Question—Solutions

The nucleophilic conversion of trityl chloride (TrCl) to trityl ethyl thioether (TrSEt) occurs by a dissociative, S_N1 mechanism:

In this problem, we'll construct an integrated rate law for ∂ [TrCl]/ ∂t .

a. Write basic (non-integrated) rate expressions for both ∂ [TrCl]/ ∂t and ∂ [Tr⁺]/ ∂t , in terms of any variables you want. (I.e., don't worry about integrating yet.) Make sure you include both processes that consume the species as well as those that create it.

$$\frac{\partial [\mathsf{Tr}\mathsf{C}\mathsf{I}]}{\partial t} = -k_1[\mathsf{Tr}\mathsf{C}\mathsf{I}] + k_{-1}[\mathsf{Tr}^+][\mathsf{C}\mathsf{I}^-]$$

$$\frac{\partial [\mathsf{Tr}^+]}{\partial t} = k_1 [\mathsf{Tr}\mathsf{C}\mathsf{I}] - k_{-1} [\mathsf{Tr}^+] [\mathsf{C}\mathsf{I}^-] - k_2 [\mathsf{Tr}^+] [\mathsf{E}\mathsf{t}\mathsf{S}^-]$$

b. Both of your expressions should contain $[Tr^{+}]$; trityl cation is a reactive intermediate, and its concentration can't be characterized, so we'll have to eliminate this term. We'll assume it's a steady-state intermediate, and that $\partial [Tr^{+}]/\partial t = 0$. Given this, use your answer to part (a) to solve for $[Tr^{+}]_{ss}$.

$$[\mathsf{Tr}^+]_{ss} = \frac{k_1[\mathsf{Tr}\mathsf{Cl}]}{k_{-1}[\mathsf{Cl}^-] + k_2[\mathsf{Et}\mathsf{S}^-]}$$

c. Plug this into your expression for ∂ [TrCl]/ ∂t from (a), and simplify as much as you can to end up with a new expressions for ∂ [TrCl]/ ∂t .

$$\frac{\partial [\text{TrCI}]}{\partial t} = -k_1 [\text{TrCI}] + k_{-1} \frac{k_1 [\text{TrCI}]}{k_{-1} [\text{CI}^-] + k_2 [\text{EtS}^-]} [\text{CI}^-]$$

$$\frac{\partial [\text{TrCI}]}{\partial t} = -\frac{k_1 k_2 [\text{TrCI}][\text{EtS}^-]}{k_{-1} [\text{CI}^-] + k_2 [\text{EtS}^-]}$$

d. EtS⁻ is a better nucleophile than Cl⁻, so k₂[EtS⁻] should always be greater than k₁[Cl⁻] if even a small excess of EtS⁻ is used. How does this affect your expression in (c)? What is the order of this reaction in [TrCl] and [EtS⁻]?

$$\frac{\partial [\mathsf{Tr}\mathsf{C}\mathsf{I}]}{\partial t} = -k_1[\mathsf{Tr}\mathsf{C}\mathsf{I}]$$

e. On your own: How would the expression for ∂ [TrSEt]/ ∂t compare to the one for ∂ [TrCl]/ ∂t in (c)?

$$\frac{\partial [\text{TrSEt}]}{\partial t} = \frac{k_1 k_2 [\text{TrCl}][\text{EtS}^-]}{k_{-1} [\text{Cl}^-] + k_2 [\text{EtS}^-]}$$

f. On your own: How would the expressions be different if you made a preequilibrium assumption rather than a steady-state assumption?

$$\frac{\partial [\text{TrCl}]}{\partial t} = -\frac{k_1 k_2 [\text{TrCl}][\text{EtS}^-]}{k_{-1} [\text{Cl}^-]}$$