Isotope Effects

Remarkably, replacing one isotope of an atom with another can substantially affect reaction equilibria and rates.

Just replacing H with D makes reaction go 5 times slower!

Equilibrium Isotope Effects

Each side of potential energy diagram represents harmonic vibrational potential well.

Vibrational states have energy

$$
\begin{aligned}
& E=\left(n_{v}+1 / 2\right) h v \\
& \text { ZPE }=\frac{1}{2} h v
\end{aligned}
$$

Equilibrium Isotope Effects

ZPE $=\frac{1}{2} h \nu$

ZPE $=\frac{1}{2} h \nu$

On this diagram, where do O-D and N-D appear?

Don't know v for O-D or N-D, but Hooke's Law says:

$$
\begin{array}{r}
\begin{array}{c}
\text { Hooke's force } \\
\text { constant }
\end{array} \\
v=\frac{1}{2 \pi} \sqrt{\frac{\kappa}{\mu}} \longleftarrow \\
\begin{array}{c}
\text { reduced } \\
\text { mass, }
\end{array} \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \\
\hline
\end{array}
$$

So, higher-frequency bond has narrower well, higher energies and larger energy differences.

Equilibrium Isotope Effects

$$
\begin{aligned}
& \Delta G_{\mathrm{H}}<\Delta G_{\mathrm{D}} \\
& K_{\mathrm{H}}>K_{\mathrm{D}} \\
& \frac{K_{\mathrm{H}}}{K_{\mathrm{D}}}>1 \\
& \quad(=1.14 \\
&\quad \text { here })
\end{aligned}
$$

