Kinetic Isotope Effects

Isotope effects more interesting when they tell us about character of rate-determining transition state.

Example:

How should isotopic substitution affect rate in this reaction?

or

How does isotopic substitution affect relative energies of starting material and transition state?
Primary Kinetic Isotope Effects

1° KIE: Isotope participates directly in reaction.

Transition-state theory says: Reaction coordinate mode has no frequency at TS.
Primary Kinetic Isotope Effects

1° KIE: Isotope participates directly in reaction.

\[
\text{EtO}^- + \text{H}_3\text{C} \rightarrow \text{EtO}^\delta+ \rightarrow \text{H}_3\text{C} \rightarrow \text{EtO}(\text{H/D})
\]

\[
\Delta G^\ddagger_\text{H} < \Delta G^\ddagger_\text{D} \quad \frac{k_\text{H}}{k_\text{D}} > 1 \quad (= 6.7 \text{ here})
\]
\[\frac{k_H}{k_D} = \frac{k_B T}{h} e^{\frac{-\Delta G_D^\ddagger}{RT}} \]

\[\frac{\Delta G_D^\ddagger - \Delta G_H^\ddagger}{RT} = e^{\frac{ZPE(C-H) - ZPE(C-D)}{RT}} \]
Secondary Kinetic Isotope Effects

Isotope effects still observed when isotope is not directly involved in reaction coordinate. (Called 2° KIE.)

\[
\frac{k_H}{k_D} = 1.1 \quad \text{(seems small, but very reproducible)}
\]

Here, C-(H/D) bond is not part of reaction coordinate.
Secondary Kinetic Isotope Effects

Before, we asked how vibrational modes changed over course of reaction.

How about now?
Primary Kinetic Isotope Effects

Before, we asked how vibrational modes changed over course of reaction.

How about now?

\[\nu_{\text{stretch}} = 2950 \text{ cm}^{-1} \quad 3050 \text{ cm}^{-1} \]

\[\nu_{\text{in-plane wag}} = 1350 \text{ cm}^{-1} \quad 1350 \text{ cm}^{-1} \]

\[\nu_{\text{out-of-plane wag}} = 1350 \text{ cm}^{-1} \quad 800 \text{ cm}^{-1} \]

Largest \(\Delta \nu \). We’ll consider this mode.
Secondary Kinetic Isotope Effects

![Diagram showing reaction coordinate and bond breaking/making](image)

1350 cm\(^{-1}\) 800 cm\(^{-1}\)

(C-Br bond breaking) (C-O bond making)
Secondary Kinetic Isotope Effects

(C-Br bond breaking) (C-O bond making)
Secondary Kinetic Isotope Effects

We don’t know what transition-state frequency is; assume is between starting material and product.
Secondary Kinetic Isotope Effects

\[\Delta G^\ddagger_H < \Delta G^\ddagger_D \]
\[k_H > k_D \]
\[\frac{k_H}{k_D} > 1 \]

(= 1.1 here)

> 1 because \(\nu \) decreased in rate-determining step (relative to starting material)

1350 cm\(^{-1}\) < \(\nu_{\text{wag}} \) < 800 cm\(^{-1}\)

\(\Delta G^\ddagger_H \) (C-Br bond breaking)
\(\Delta G^\ddagger_D \) (C-O bond making)
Secondary Kinetic Isotope Effects

\[
\frac{k_H}{k_D} \text{ can also be } < 1:
\]

\[
\frac{k_H}{k_D} = 0.95
\]

sp\(^2\) → sp\(^3\) hybridization at C-H/D shows opposite trend from previous example;

\[
\Delta G^{\dagger}_H > \Delta G^{\dagger}_D
\]

\[
k_H < k_D
\]

\[
\frac{k_H}{k_D} < 1
\]