Heavy-Atom Isotope Effects

 $k_{\rm H}/k_{\rm D}$ provides large change in reduced mass, but other isotope effects also studied.

Heavy-Atom Isotope Effects

 $k_{\rm H}/k_{\rm D}$ provides large change in reduced mass, but other isotope effects also studied.

Calculating Isotope Effects

$$\left(\frac{k_{\rm H}}{k_{\rm D}}\right)_{\rm overall, for n \, modes} = \left(\frac{k_{\rm H}}{k_{\rm D}}\right)_{V_1} \left(\frac{k_{\rm H}}{k_{\rm D}}\right)_{V_2} \cdots \left(\frac{k_{\rm H}}{k_{\rm D}}\right)_{V_n}$$

For simplicity, we have tried to identify one major component to isotope effect;

But, there may be multiple components.

Computational methods for calculating isotope effects for all vibrational modes are available.

Isotope Effects and Enzyme Mechanisms

Chem. Soc. 1998, 120, 7975-7976.

Isotope Effects and Enzyme Mechanisms

Chem. Soc. **1998**, *120*, 7975-7976.

Intra- vs. Inter-molecular Isotope Effects: Probing Non-Rate-Determining Steps

How do we find out about mechanism of subsequent steps?

Intra- vs. Inter-molecular Isotope Effects: Probing Non-Rate-Determining Steps

Intra- vs. Inter-molecular Isotope Effects: Probing Non-Rate-Determining Steps

Intramolecular Isotope Effects

reaction coordinate

Intramolecular Isotope Effects

reaction coordinate

Occasionally, isotope effects are too large to explain with vibrational mode analysis.

Explanation:

Isotope effect from differing abilities of H & D to "tunnel" through kinetic reaction barrier.

See: Kohen, A.; Klinman, J. P. *Chem. Biol.* **1999**, *6*, R191-R198; Kohen, A.; Klinman, J. P. *Acc. Chem. Res.* **1998**, *31*, 397 -404.

de Broglie Wavelength:

$$\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mkT}}$$

Heisenberg uncertainty results in larger displacements for H than D.

So, H "tunnels" through barriers better than D.

Crystal structure, soybean lipoxygenase w/ linoleic acid

Hypothesis:

Enzyme operates by forcing H(D) into tunneling distance (< λ).

Knapp, M. J.; Seebeck, F. P.; Klinman, J. P. *J. Am. Chem. Soc.* **2001**, *123*, 2931-2932.

Important feature of tunneling:

de Broglie wavelength λ much less sensitive to temperature than rate constants *k*.

So, if

 $k_{\rm obs} = k_{\rm thermal} + k_{\rm tunneling}$,

