
Heavy-Atom Isotope Effects
kH/kD provides large change in reduced mass, 
but other isotope effects also studied.

k12C

k13C
~ 1.04

isotope
effect

typical
maximum

value

k12C

k14C
~ 1.07

k14N

k15N
~ 1.03

k16O

k18O
~ 1.03

35/37Cl

H

R
R

35/37Cl

H

R
R

B

R
R

+

35/37Cl

BH

B

35/37Cl

H

R
R

B

35/37Cl

R
R

BH

E2

E1CB

Example:
k35Cl

k37Cl

C-Cl bond breaking
in rate-determining step

C-Cl bond remains
in rate-determining step

δ-

δ-

δ-

δ-

Method for measuring heavy isotope effects at natural abundance:
Singleton, D. A. et al. J. Am. Chem. Soc. 1995, 117, 9537.
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Calculating Isotope Effects

For simplicity, we have tried 
to identify one major 
component to isotope effect;

But, there may be multiple 
components.

Computational methods for 
calculating isotope effects for 
all vibrational modes are 
available.
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Isotope Effects and Enzyme Mechanisms

Weller, V. A.; Distefano, M. D. J. Am. 
Chem. Soc. 1998, 120, 7975-7976.
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Isotope Effects and Enzyme Mechanisms
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Intra- vs. Inter-molecular Isotope Effects:
Probing Non-Rate-Determining Steps

cytochrome P450
(enzyme)

What if first step (enzyme-substrate complexation) 
is rate-determining?

How do we find out about mechanism of 
subsequent steps?
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Intra- vs. Inter-molecular Isotope Effects:
Probing Non-Rate-Determining Steps
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Intra- vs. Inter-molecular Isotope Effects:
Probing Non-Rate-Determining Steps

cytochrome P450
(enzyme)
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Isotope Effects and Tunneling
Occasionally, isotope effects are too large to explain with 

vibrational mode analysis.

(rate-determing
step)

= 81 (!)
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kD

See: Kohen, A.; Klinman, J. P. Chem. Biol. 1999, 6, R191-R198;
Kohen, A.; Klinman, J. P. Acc. Chem. Res. 1998, 31, 397 -404.
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Explanation:

Isotope effect from 
differing abilities of H & D 
to “tunnel” through kinetic 
reaction barrier.
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Isotope Effects and Tunneling

Heisenberg uncertainty
results in larger 
displacements for H than D.
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λ(H) = 1.8 Å (at 298 K)
λ(D) = 1.2 Å

FeIII

O

H

H/D

R

H/D
R'

FeIII

O

H

H/D

R

H/D
R'

nυ = 0

nυ = 1

E

So, H “tunnels” through 
barriers better than D.

d < λ?
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Isotope Effects and Tunneling
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J. Am. Chem. Soc. 2001, 123, 2931-2932.
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Hypothesis:
Enzyme operates by forcing H(D) 
into tunneling distance (< λ).

Crystal structure, soybean 
lipoxygenase w/ linoleic acid

tunnel?
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Isotope Effects and Tunneling

Important feature of tunneling: 

de Broglie wavelength λ much less sensitive to temperature 
than rate constants k.

So, if

kobs = kthermal + ktunneling ,

ln(kobs)

1/T

R
Easlope =

When kthermal dominates,
rates vary with temperature in usual way.

When ktunneling dominates,
rates vary little with temperature. (“Ea” ≈ 0)

Question is, which regime is 
exhibited at room temperature?


