Isotope Tracking

Easier way to use isotopes in mechanistic analysis is to simply track location of isotope in products.

Classic Example: Eschenmoser's experiment.

Expected that reaction was intramolecular.

Isotope Tracking

Easier way to use isotopes in mechanistic analysis is to simply track location of isotope in products.

Classic Example: Eschenmoser's experiment.

(expected)

Isotope Tracking

Easier way to use isotopes in mechanistic analysis is to simply track location of isotope in products.

Classic Example: Eschenmoser's experiment.

Isotope scrambling indicated intermolecular mechanism.

Tenud, L.; Farouq, S.; Seible, J.; Eschenmoser, A. Helv. Chim. Acta 1970, 53, 2054.

Diverting Intermediates and Mechanistic Clocks

- Sometimes is possible to test hypotheses about mechanisms, intermediates by intentionally diverting them.
- For more info, read MPOC Chapter 8.8.

Understanding Rate-Determining Transition States

Why?

- Optimize reaction conditions. Knowing about ratedetermining step may lead to improvements.
- Design catalysts. Catalysts only work if they lower the energy of the rate-determining transition state.
- Design therapeutic inhibitors. Pharmaceuticals that bind enzyme active site better than the natural transition state can stop catalytic activity.

Principles of Catalysis

Review:

$$
\begin{aligned}
& E+S \stackrel{k_{1}}{k_{-1}} E S \\
& E S \xrightarrow{k_{\text {cat }}} E+P
\end{aligned}
$$

$$
\mathrm{S} \longrightarrow \mathbf{P}
$$

Used $[E]_{\text {tot }}=[E]+[E S]$ to derive

$$
\begin{array}{r}
\frac{\partial[\mathrm{P}]}{\partial t}=\frac{k_{\mathrm{cat}}[\mathrm{E}]_{\mathrm{tot}}[\mathrm{~S}]}{K_{\mathrm{M}}+[\mathrm{S}]} \\
K_{\mathrm{M}}=\frac{k_{\mathrm{cat}}+k_{-1}}{k_{1}}
\end{array}
$$

(Michealis-Menton equation)

Set of reactions regenerates \mathbf{E}.

Principles of Catalysis

Review:

$$
\begin{array}{r}
E+S \xrightarrow[k_{-1}]{\stackrel{k_{1}}{\rightleftharpoons} E S} \\
E S \xrightarrow{k_{\text {cat }}} E P \\
E P \stackrel{\text { fast }}{\rightleftharpoons} E+P
\end{array}
$$

We'll assume catalyst actually binds product complex as well.
$S \longrightarrow P$

Principles of Catalysis

Principles of Catalysis

Catalysts stabilize (bind) the transition state.

Principles of Catalysis

Pauling's Hypothesis: By definition, catalysts must bind the transition state more strongly than starting materials.

$S \longrightarrow P$

Principles of Catalysis

Pauling's Hypothesis: By definition, catalysts must bind the transition state more strongly than starting materials.

Principles of Catalysis

Pauling's Hypothesis: By definition, catalysts must bind the transition state more strongly than starting materials.

Principles of Catalysis

Pauling's Hypothesis: By definition, catalysts must bind the transition state more strongly than starting materials.

Principles of Catalysis

Figure 9.17, p. 528

Warning:
This notation conflicts with mine.

For me,

comes from this step.

