

Thermodynamics "On the Fly"

Reminder of some good rules of thumb:

- At room temperature, $\Delta G = 1.4$ kcal/mol is equivalent to an order of magnitude in equilibrium constant *K*.
- Creating a new molecule in the gas phase yields ∆S ≈ 50 cal/mol K ("entropy units", eu); 15 kcal/mol at room temperature
- New molecules in solution are worth less (< 35 eu)

Example:
$$N_2O_4 \Longrightarrow 2 NO_2$$
 $\Delta H^\circ = +14 \text{ kcal/mol}; \Delta G_{RTP} \approx 0.$
So, $K_{eq} \approx 1 M.$

(Standard energy means units refer to 1 M of all reactants and products.)

Concept: ΔH for reaction can be estimated from types of bonds that are created and broken in reaction.

Don't need to know mechanism to do this; just look at bonds.

Example: Oxidation of methane to methanol (to convert gas to liquid fuel).

 $H_3C-H + H-OH \longrightarrow H_3C-OH + H-H$

We don't know the mechanism of this reaction.

What if we just pulled bonds apart and put them back together again? Enthalpy of reaction (state function) would be the same.

 $H_3C-H + H-OH \longrightarrow H_3C-OH + H-H$

Strategy: Use Bond Dissociation Energies (BDEs), enthalpy of individual homolytic bond cleavage, to calculate sum of bond breaking and bond making processes.

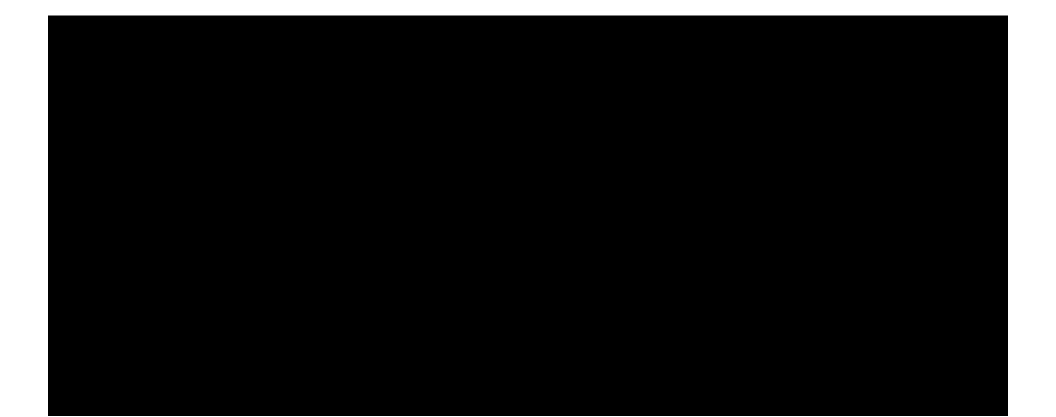
For $R_1 - R_2 \rightarrow R_1 + \cdot R_2 \qquad \Delta H_r = BDE$

Standard Bond Dissociation Energies (BDEs)

Bond Type	BDE (kcal/mol)	Bond Type	BDE (kcal/mol)	Bond Type	BDE (kcal/mol)	Bond Type	BDE (kcal/mol)
H–H	104.2	H–Br	87.5	C–I	51	C=O (CO ₂)	192
C–C	83	H–I	71	C–B	90	C=O (aldehyde)	177
N–N	38.4	H–B	90	C–Si	83	C=O (ketone)	178
0–0	35	H–S	81	C–P	70	C=O (ester)	179
F–F	36.6	H–Si	75	N–O	55	C=O (amide)	179
Si–Si	52	H–P	77	S–0	87	C=O (halide)	177
P–P	50	B–F	150	Si–F	135	C=S (CS ₂)	138
S–S	54	B–O	125	Si–Cl	90	N=O (HONO ₂)	143
CI–CI	58	C–N	73	Si–O	110	P=O (POCl ₃)	110
Br–Br	46	N–CO	86	P–Cl	79	P=S (PSCl ₃)	70
I–I	36	C-0	85.5	P–Br	65	S=O (SO ₂)	128
H–C	99	0–C0	110	P–O	90	S=O (DMSO)	93
H–N	93	C–S	65	C=C	146	P=P	84
H–O	111	C–F	116	N=N	109	P≡P	117
H–F	135	C–Cl	81	O=0	119	C≡O	258
H–CI	103	C–Br	68	C=N	147	C≡C	200
						N≡N	226

C≡N

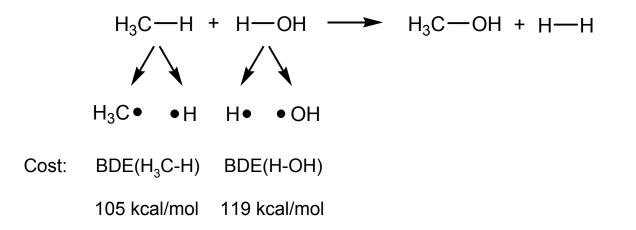
213


From http://www.cem.msu.edu/~reusch/OrgPage/bndenrgy.htm.

Standard Bond Dissociation Energies (BDEs)

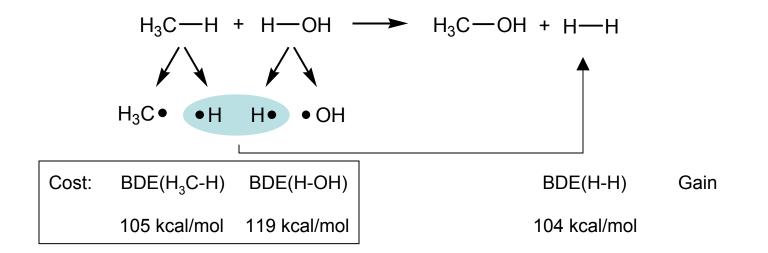
Bond	BDE	Bond	BDE	Bond	BDE
H-H	104.2 (104.2)	CH ₂ =CH-H	110 (110.7)	CH ₃ –CH ₃	90.4 (90.1)
CH ₃ –H	105.1 (105.0)	C ₆ H ₅ –H	110.9 (112.9)	CH ₃ -F	109.9 (115)
CH ₃ CH ₂ –H	98.2 (101.1)	HC≡C–H	132 (131.9)	CH ₃ –Cl	84.6 (83.7)
(CH ₃) ₂ CH–H	95.1 (98.6)	C ₆ H ₅ CH ₂ –H	88 (89.7)	CH ₃ –Br	70.9 (72.1)
(CH ₃) ₃ C–H	93.2 (96.5)	CH ₂ =CHCH ₂ -H	86.3 (88.8)	CH ₃ –I	57.2 (57.6)
c(CH ₂) ₃ –H	106.3	CH ₃ C(O)–H	86 (88.1)	CH ₃ -OH	92.3 (92.1)
c(CH ₂) ₄ –H	96.5	HO-H	119 (118.8)	CH ₃ -NH ₂	84.9 (85.2)
c(CH ₂) ₅ –H	94.5	CH ₃ O–H	104.4 (104.6)	CH ₃ –SH	74
c(CH ₂) ₆ –H	95.5	NH ₂ –H	107.4 (107.6)	CH ₃ –SiH ₃	88.2
	82.3	CH ₃ S–H	90.7 (87.4)	CH ₃ –SiMe ₃	89.4
Н		HO-OH	51	CH ₃ –GeMe ₃	83
	71.1	CH ₃ O-OCH ₃	37.6 (38)	CH ₃ –SnMe ₃	71
Н		HOCH ₂ –H	94 (96.1)	CH ₃ -PbMe ₃	57
H	73	H ₂ C=CH ₂	(174.1)	CH ₃ -OCH ₃	(83.2)
H	97.4	НС≡СН	(230.7)	CH ₃ -C ₂ H ₅	(89.0)
⊳н	90.6	H ₂ C=O	(178.8)	CH ₃ -CH(CH ₃) ₂	(88.6)
CH ₃ -CH=CH ₂	(101.4)	CH ₃ -C ₆ H ₅	(103.5)	CH ₃ -C(CH ₃) ₃	(87.5)
C ₆ H ₅ –C ₆ H ₅	(118)	CH ₃ -CH ₂ C ₆ H ₅	(77.6)	CH ₃ -CH ₂ CH=CH ₂	(76.5)

From Anslyn & Dougherty, p. 72. Plenty more available on the Web.


 $H_3C-H + H-OH \longrightarrow H_3C-OH + H-H$

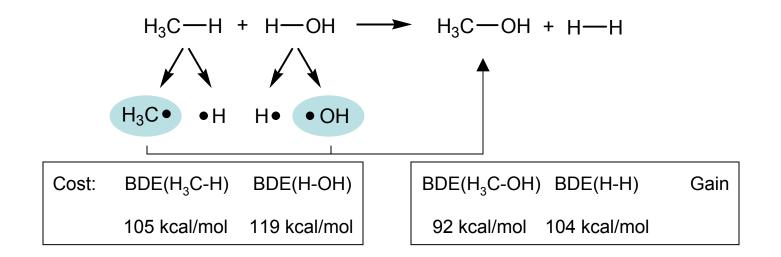
Concept: So, to determine ΔH for entire reaction, sum up ΔH values (BDEs) for all bonds broken and made.

Don't need to know mechanism to do this; just look at bonds.


Example: Oxidation of methane to methanol (to convert gas to liquid fuel).

Concept: ΔH for reaction can be estimated from types of bonds that are created and broken in reaction.

Don't need to know mechanism to do this; just look at bonds.


Example: Oxidation of methane to methanol (to convert gas to liquid fuel).

Concept: ΔH for reaction can be estimated from types of bonds that are created and broken in reaction.

Don't need to know mechanism to do this; just look at bonds.

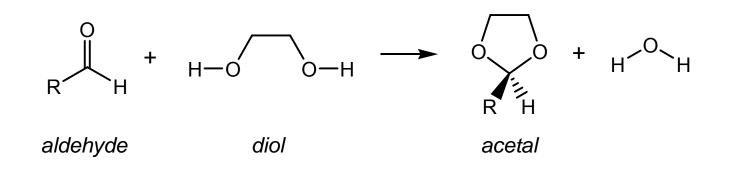
Example: Oxidation of methane to methanol (to convert gas to liquid fuel).

Concept: ΔH for reaction can be estimated from types of bonds that are created and broken in reaction.

Don't need to know mechanism to do this; just look at bonds.

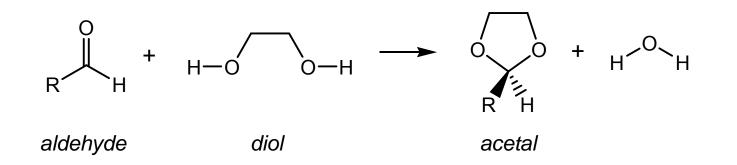
Example: Oxidation of methane to methanol (to convert gas to liquid fuel).

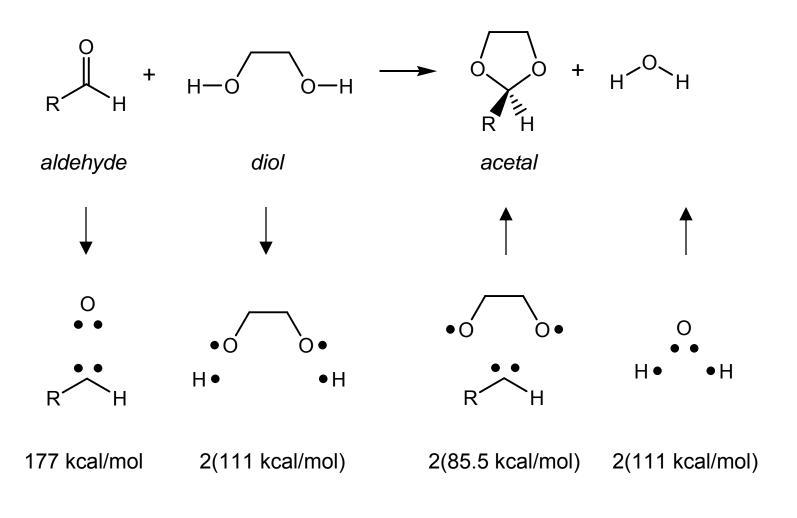
 $H_3C-H + H-OH \longrightarrow H_3C-OH + H-H$

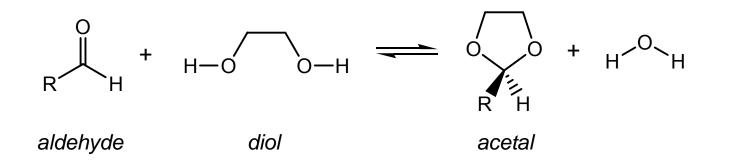

Overall $\Delta H = 105 + 119 - 92 - 104 = +28$ kcal/mol. (Endothermic.)

Cost:	BDE(H ₃ C-H)	BDE(H-OH)	BDE(H ₃ C-OH) BDE(H-H)	Gain
	105 kcal/mol	119 kcal/mol	92 kcal/mol 104 kcal/mol	

Concept: ΔH for reaction can be estimated from types of bonds that are created and broken in reaction.


Don't need to know mechanism to do this; just look at bonds.


Warning: Using BDEs to calculate ΔH_r works okay, but is not very accurate. Good enough for thermo "on the fly" though.


For the reaction above,

- 1. What bonds are made and broken?
- 2. What do the BDEs of these bonds mean for the overall ΔH for this reaction?
- 3. If you wanted the reaction to proceed to 99% completion ([acetal]/[aldehyde] = 100), what would the ratio [H₂O]/[diol] have to be? How might you pull/push this reaction to this degree of completion (if necessary)?

 $\Delta H_{\rm r}$ = +6 kcal/mol

 $\Delta H_{\rm r}$ = +6 kcal/mol.

Assuming $\Delta S \approx 0$ (number of molecules is the same on both sides), $\Delta G_r = +6$ kcal/mol.

Our rule of thumb says that this means $K_{eq} = \frac{[acetal][H_2O]}{[aldehyde][diol]} \approx 0.0001.$ So, to reach $\frac{[acetal]}{[aldehyde]} = 100, \quad \frac{[H_2O]}{[diol]} \quad must \approx 1 \times 10^{-6}.$