
Solvation and Weak Interactions

"Like dissolves like": appropriate, but not sufficient.

Solvation and Weak Interactions

Solvent Scales

Solvent	Е	α	β
Formamide	111	0.71	0.48
Water	78	1.17	0.47
DMSO	47	0.00	0.76
DMF	37	0.00	0.76
Acetonitrile	36	0.19	0.40
Methanol	33	0.93	0.66
HMPA	29	0.00	1.05
Ethanol	25	0.83	0.75
Acetone	21	0.08	0.43
Isopropanol	20	0.76	0.84
t-Butyl alcohol	12	0.42	0.93
Pyridine	13	0.00	0.64
Methylene chloride	9	0.13	0.10
THF	8	0.00	0.55
Acetic acid	6	1.12	0.45
Ethyl acetate	6	0.00	0.45
Chloroform	5	0.20	0.10
Diethyl ether	4	0.00	0.47
Benzene	2	0.00	0.10
Carbon tetrachloride	2	0.00	0.10
<i>n</i> -Hexane	2	0.00	0.00

Dielectric constant (ε):

Measure of polarity, polarizability Values obtained by measuring capacitance across solvent

Taft α/β :

Measure of proton donating/proton accepting character

Interesting contrast: Acetic acid & ethyl acetate

Same dielectric constant, but very different miscibility with water (AcOH infinitely miscible, EtOAc immiscible)

(from MPOC text, page 147)

Solvent Scales

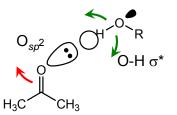
Gutmann acceptor/donor numbers (AN/DN): measure of Lewis basicity/acidity.

solvent	acceptor	donor
	number number	
	(AN)	(DN)
H₂O	54.8	18
MeOH	41.3	19.1
EtOH	37.1	19.2
1-Propanol	37.7	19.8
2-Propanol	33.8	21.1
t-Butanol	27.1	21.9
DMSO	19.3	29.8
MeCN	18.9	14.1
Nitromethane	20.5	2.7
Diethyl ether	3.9	19.2
CCl ₄	8.6	0
Benzene	8.2	0
Hexane	0	0

DMSO: Great e⁻ donor, but poor acceptor

Methanol: Good e⁻ donor, but great e⁻ acceptor (H-donor)


Point is not importance of this particular scale, but rather differences in the ways scales are defined, how solvents and solutes interact.


Weak Interactions

- Earlier, discussed strong bonding interactions, BDEs ≈ 50-200 kcal/mol.
- Structures, properties, activities of molecules also depend on weaker, non-bonding interactions. (As does solvent character.)
- Biological molecules, polymer materials, organic molecule/drug design, analyte recognition, all depend on weak interactions.
- But...they are much harder to measure and characterize.

Hydrogen Bonding

What you probably already know:

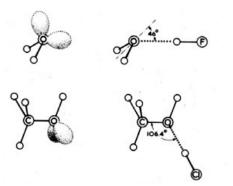
Co-linear arrangement is preferred;

Orbital overlap optimized when O_{sp^2} is directed at O-H σ^* .

- Other angles about oxygen > 120° are well accommodated (H-bond almost as strong)*
- Other angles about hydrogen are poorly accommodated (weaker Hbond)*

Hydrogen Bonding

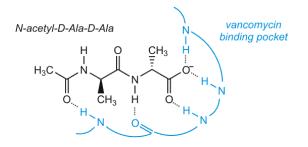
What you may not know: "Strength" of H-bond depends on context.


BDEs are measured without context:

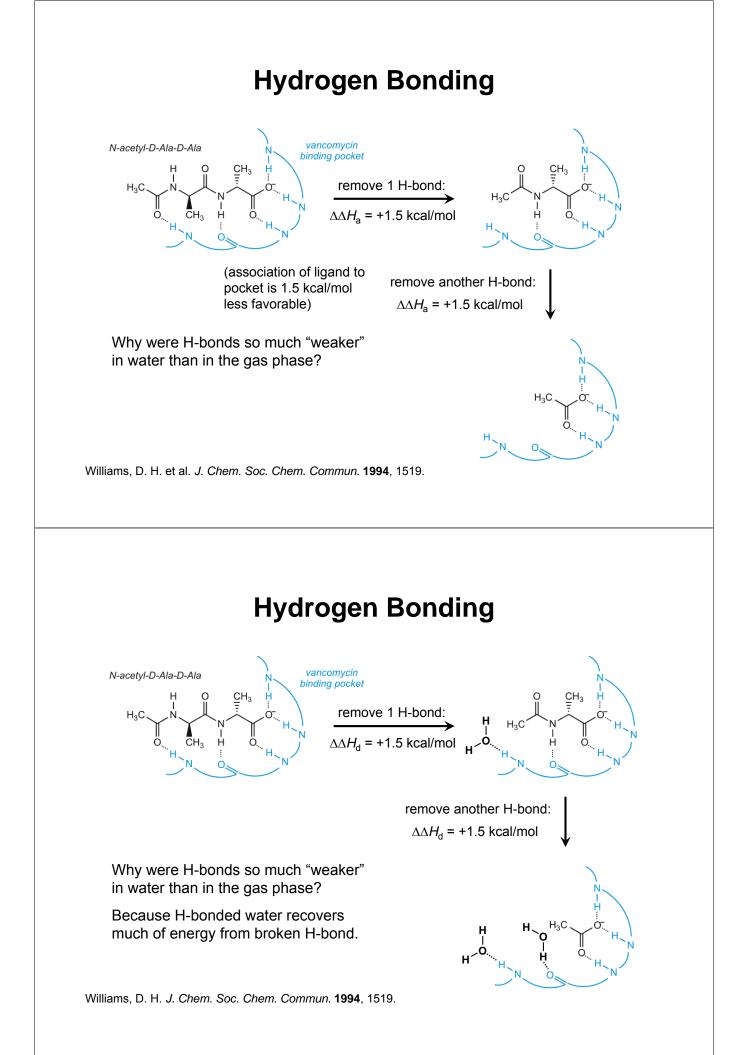
 $R_1 - R_2 \rightarrow R_1 + R_2 \Delta H_r = BDE$

Typically measured in the gas phase (vacuum):

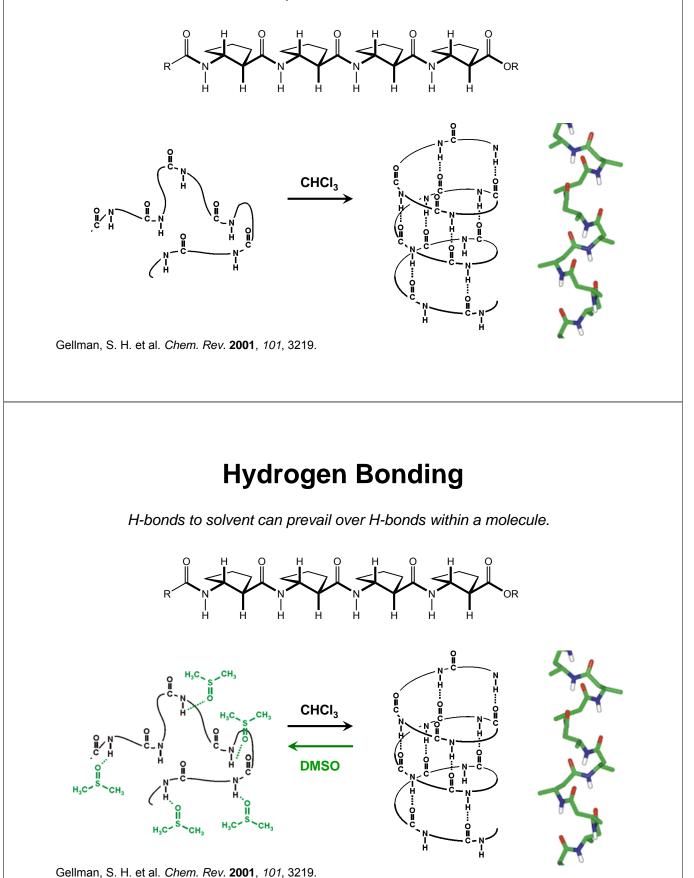
BDE $(H_2O \cdot HF) = 8 \text{ kcal/mol}$ BDE $(CH_3OH \cdot HCI) = 7 \text{ kcal/mol}$


(Geometries from gas-phase spectroscopic measurements. Legon, A. C.; Millen, D. J. *Acc. Chem. Res.* **1987**, *20*, 39-46.)

Hydrogen Bonding

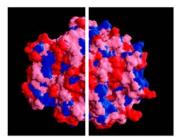

What you may not know: "Strength" of H-bond depends on context.

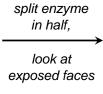
What if molecules are dissolved in solvent that can also H-bond (like H_2O)? Competitive H-bond interactions can make H-bond "worth" much less.

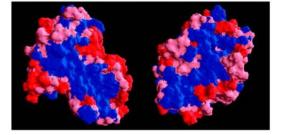

In water, how much is each hydrogen bond between receptor & ligand worth?

Answer by successively removing H bonds.

Hydrogen Bonding

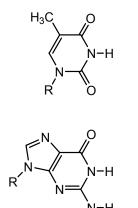

H-bonds to solvent can prevail over H-bonds within a molecule.

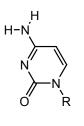


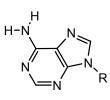

Hydrophobic Effect

If H-bonding solvents (like H_2O) are so good at competing for H-bonds, how do biomolecules stay folded?

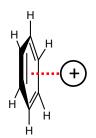
The "hydrophobic effect": more accurately *de-solvation* than a weak interaction.

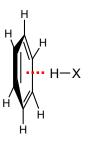

BphC enzyme; hydrophilic residues (K,D,E,R,Q,N) red hydrophobic residues (I,F,V,M,W,C,Y) blue

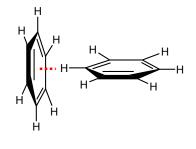

- Exclusion of hydrophobic residues from water important to folding;
- H-bonds "stronger" inside the protein as a result.


Zhou, R. et al. Science 2004, 305, 1605.

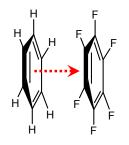
Bases in DNA ("R" is DNA strand):






Assume that you can translate these bases however you want, but you can't rotate them. How can they be paired? (There are more than two possible pairs!) If $\Delta G_{\text{H-bond}} = 1.2$ kcal/mol, how much are these pairs worth?

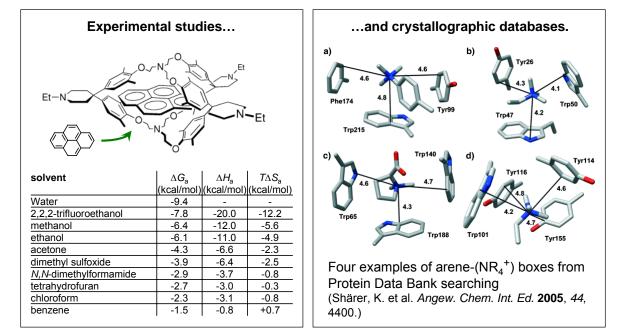
Weak Arene Interactions



arene-H

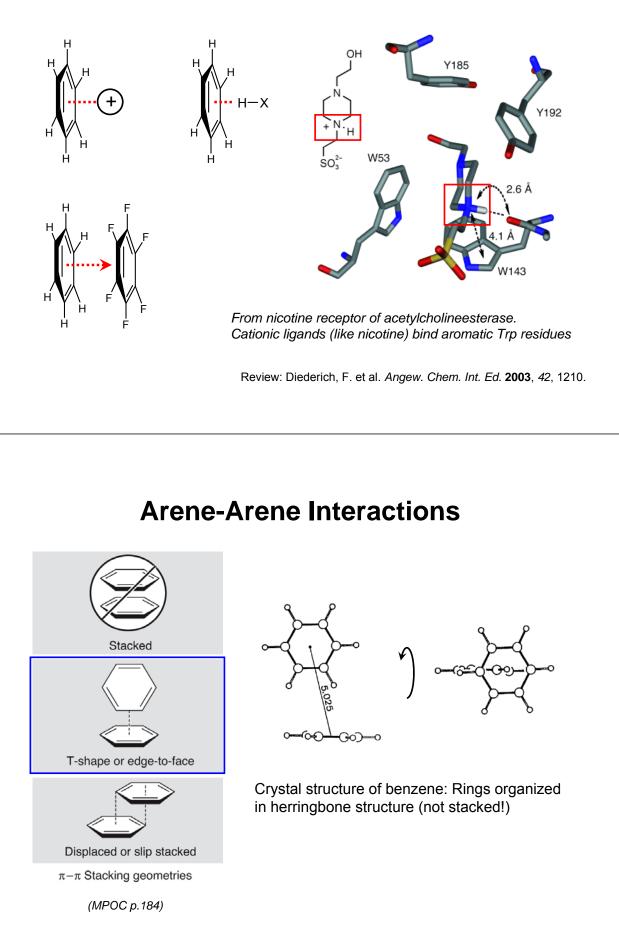
arene-arene

arene-cation

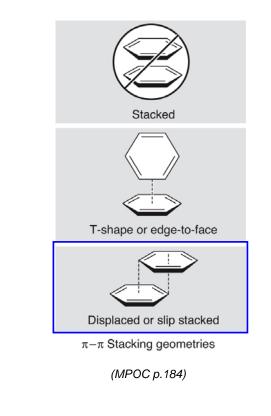

ET complex arene-arene

- · Aromatic face can act as electron donor
- Forms interactions with dissociaton energies ~ 1-5 kcal/mol

Review: Diederich, F. et al. Angew. Chem. Int. Ed. 2003, 42, 1210.


Weak Arene Interactions

How do we know?



Review: Diederich, F. et al. Angew. Chem. Int. Ed. 2003, 42, 1210.

Arene Donor Interactions

Arene-Arene Interactions

Example: DNA

(From http://www.bio.cmu.edu/Courses/BiochemMols/ Stacks/bpStacks.htm. Requires MDL Chime, at http://www.mdli.com)