Enthalpy-Entropy Compensation

$\Delta \Delta H_{\mathrm{a}}=-1.5 \mathrm{kcal} / \mathrm{mol}$
$T \Delta \Delta \mathrm{~S}_{\mathrm{a}}=-1.0 \mathrm{kcal} / \mathrm{mol}$
N-acetyl-D-Ala-D-Ala

- Strategy of adding binding groups to increase ligand affinity works.
- But, for additive weak interactions, increased binding enthalpy is compensated by decreased entropy.

...but thermal energy within deeper potential well doesn't sample as many conformations; so, entropy lost.

Multiple Interactions ("Multivalency"): Building Better Ligands \& Catalysts

Possible reasons for designing/understanding multiple interactions:

- Stronger binders
$>$ Higher-affinity pharmaceuticals
$>$ Improved organometallic ligands
- More selective binders
$>$ Decrease non-specific drug targeting
$>$ Improved response of analytical detectors
- Faster catalysts
$>$ Better-designed synthetic enzymes
$>$ Improved polymerization catalysts
- More selective catalysts
$>$ Enhanced enantioselectivity, substrate specificity

Multivalency ("Chelate Effect"): Concepts

What is the advantage of tethering two ligands together?

(sequential step 1 \& step 2 above)

$K_{\mathrm{AB}} \neq K_{\mathrm{A}} K_{\mathrm{B}} ;$ difference illustrates advantage/ disadvantage of connecting ligands. Effect is primarily entropic.

Degree of Cooperativity (α)

What is the advantage of tethering two ligands together?
i.e., How much better or worse does the " B " in $A-B$ bind than you would expect?

$$
\alpha=\frac{K_{\mathrm{AB}}}{K_{\mathrm{A}} K_{\mathrm{B}}}
$$

Example:

(because A \& B

$$
\begin{aligned}
K_{\mathrm{A}} K_{\mathrm{B}} & =\left(K_{\mathrm{A}}\right)^{2} \\
& =2.5 \times 10^{5} \mathrm{M}^{-2}
\end{aligned}
$$

$$
\alpha=9.5
$$

$$
K_{\mathrm{AB}}=2.4 \times 10^{6} \mathrm{M}^{-1}
$$

Degree of Cooperativity (α)

Degree of Cooperativity (α)

Works well for very small ligands with little conformational freedom.

Works less well with larger ligands.

Example:

Influenza hemagglutinin protein. Binds multiple sialic acid molecules on your cells at once.

therapeutic
flu inhibitor

$$
K_{\text {sialic dimer }}=40000 \mathrm{M}^{-1}
$$

Degree of Cooperativity (α)

Works well for very small ligands with little conformational freedom.
Works less well with larger ligands.

Example:

Influenza hemagglutinin protein. Binds multiple sialic acid molecules on your cells at once.

$\Delta G_{\text {sialic acid }}=-3.3 \mathrm{kcal} / \mathrm{mol}$

$$
\alpha=0.25
$$

$(\Delta \Delta G=+0.8 \mathrm{kcal} / \mathrm{mol})$

$\Delta G_{\text {sialic dimer }}=-5.8 \mathrm{kcal} / \mathrm{mol}$

Enhancement Factor (β)

Enhancement Factor (β)

Just a measure of how much better a ligand A_{2} is than A. (Says nothing about contribution of entropy.)

$K_{\text {sialic dimer }}=40000 \mathrm{M}^{-1}$

Phenomenological Kinetics

How do we understand, predict rates of reactions from experimental data?
What do we even mean by "rate"? Consider:

$$
\begin{gathered}
\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2} \\
\text { Could define rate }=\frac{d\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{d t} \text { or } \frac{d\left[\mathrm{NO}_{2}\right]}{d t} \text { or } \frac{d\left[\mathrm{O}_{2}\right]}{d t}
\end{gathered}
$$

For this reaction, by definition from stoichiometry,

$$
-\frac{d\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{d t}=\frac{1}{2} \frac{d\left[\mathrm{NO}_{2}\right]}{d t}=2 \frac{d\left[\mathrm{O}_{2}\right]}{d t}
$$

(For every molecule of $\mathrm{N}_{2} \mathrm{O}_{5}$ consumed, 2 of NO_{2} created, etc...)

Understanding Reaction Rates

$\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$

$$
\begin{aligned}
-\frac{d\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{d t} & =\frac{1}{2} \frac{d\left[\mathrm{NO}_{2}\right]}{d t} \\
& =2 \frac{d\left[\mathrm{O}_{2}\right]}{d t}
\end{aligned}
$$

True at any time.
Don't need to know anything about reaction mechanism to say this.

Measuring Reaction Rates

$$
\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}
$$

Measuring Reaction Rates

$$
\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}
$$

Understanding Reaction Rates

$$
\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}
$$

$$
\begin{aligned}
-\frac{\Delta\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\Delta t} & =\frac{1}{2} \frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta t} \\
& =2 \frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}
\end{aligned}
$$

True over any time period.
Again, don't need to know anything about reaction mechanism to say this.

Phenomenological Kinetics

Most important question:
How does rate depend on reactant concentration?
For any reaction, can write a rate law:

$$
\begin{array}{ll}
\text { rate }=k[\text { reagent }]^{x} & \begin{array}{l}
k: \text { rate constant } \\
x: \text { reaction order }
\end{array}
\end{array}
$$

- k and x are determined experimentally.
- $k=f(r x n$, temp) and is always a positive number.
- x has no necessary relationship to the coefficients of the balanced chemical equation. Is usually an integer or fraction. Can be zero.

Method of Initial Rates

$$
\text { rate }=k[\text { reagent }]^{x}
$$

Problem: rate changes, over time, as [reagent] changes. So, if we don't have a good way of monitoring [reagent], how do we determine k and x ?

Solution: [reagent] is defined at $t=0$, and is effectively constant at beginning of reaction (first few \%)
So measure multiple rates at $t=0$ for different starting concentrations [reagent], solve for k and x.

Method of Initial Rates

Consider: $\quad 2 \mathrm{NO}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{NOBr}$
For rate $=k[\mathrm{NO}]^{x}\left[\mathrm{Br}_{2}\right]^{y}$,
what are k, x, y ?
Solution:
Vary each concentration independently; solve for variables.

Run \#	$[\mathrm{NO}]_{0}(\mathrm{M})$	$\left[\mathrm{Br}_{2}\right]_{0}(\mathrm{M})$	$\left\{d\left[\mathrm{Br}_{2}\right] / d \mathrm{t}\right\}_{0}$ $(\mathrm{M} / \mathrm{min})$
1	1.00	1.00	1.3×10^{-3}
2	1.50	1.00	2.93×10^{-3}
3	1.50	3.00	8.78×10^{-3}

(answer on the board)

Consider: $\quad 2 \mathrm{NO}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{NOBr}$
For \quad rate $=k\left[\mathrm{NO}^{\chi}\left[\mathrm{Br}_{2}\right]\right.$, what are k, x, y ?
Solution:
Vary each concentration independently; solve for variables.

Run \#	$[\mathrm{NO}]_{0}(\mathrm{M})$	$\left[\mathrm{Br}_{2}\right]_{0}(\mathrm{M})$	$\left\{d\left[\mathrm{Br}_{2}\right] / d \mathrm{tt}\right\}_{0}(\mathrm{M} / \mathrm{min})$
1	1.00	1.00	1.3×10^{-3}
2	1.50	1.00	2.93×10^{-3}
3	1.50	3.00	8.78×10^{-3}

Method of Initial Rates

$$
d\left[\mathrm{Br}_{2}\right] / d t=k[\mathrm{NO}] \times\left[\mathrm{Br}_{2}\right]^{y}
$$

$$
\begin{aligned}
& d\left[\mathrm{Br}_{2}\right]^{]} / \mathrm{t}_{\text {(run 1) }}=k[\mathrm{NO}]_{\text {(run 1) })^{*}}\left[\mathrm{Br}_{2}\right]_{\text {(run 1) }{ }^{y}} \\
& d\left[\mathrm{Br}_{2}\right]^{\prime} / d t_{\text {(run 2) }}=k[\mathrm{NO}]_{(\text {run 2) })^{*}}\left[\mathrm{Br}_{2}\right]_{\text {(run 2) }}{ }^{y}
\end{aligned}
$$

$$
凸
$$

$$
\frac{d\left[\mathrm{Br}_{2}\right] / d \mathrm{t}_{\text {(un 1) }}}{d\left[\mathrm{Br}_{2}\right] / d t_{\text {(un 2) }}}=\frac{k\left[\mathrm{NO}_{(\text {(un 1 1 }}{ }^{x}\left[\mathrm{Br}_{2}\right]_{\text {(un 1) }}\right)^{y}}{k\left[\mathrm{NO}_{(\text {(un 2 2 }}{ }^{*}\left[\mathrm{Br}_{2}\right]_{\text {(run 2) }}{ }^{y}\right.}
$$

For runs 1 and 2, we made $\left[\mathrm{Br}_{2}\right]$ the same. $\left[\mathrm{Br}_{2}\right]_{(\mathrm{run} \mathrm{1)}}{ }^{y}=\left[\mathrm{Br}_{2}\right]_{(\mathrm{run} 2)^{y}}$.

Method of Initial Rates

$$
\begin{gathered}
\frac{d\left[\mathrm{Br}_{2}\right] / d \mathrm{t}_{(\text {run 1) }}}{d\left[\mathrm{Br}_{2}\right] / d t_{(\text {run 2) }}}=\frac{[\mathrm{NO}]_{(\text {run 1) }}{ }^{x}}{[\mathrm{NO}]_{(\text {run 2) }}{ }^{x}} \\
\frac{1.3 \times 10^{-3} \mathrm{M} / \mathrm{min}}{2.93 \times 10^{-3} \mathrm{M} / \mathrm{min}}=\frac{(1.00 \mathrm{M})^{x}}{(1.50 \mathrm{M})^{x}}=\left(\frac{1.00 \mathrm{M}}{1.50 \mathrm{M}}\right)^{x}
\end{gathered}
$$

Solution: $x=2$.
Using the same method for runs 2 and 3,

$$
\begin{aligned}
\left([\mathrm{NO}]_{(\text {run } 2)^{x}}\right. & \left.=[\mathrm{NO}]_{(\text {run } 3)^{x}}\right) \\
y & =1 ;
\end{aligned}
$$

Plug these x and y into any relation, get

$$
k=1.3 \times 10^{-3} \mathrm{M}^{-2} \mathrm{~min}^{-1}
$$

Method of Initial Rates

Pros: Decomposition or other subsequent reactions play no role in initial rate, so data very reliable. Good for enzyme, polymerization kinetics.

Cons: Have to perform multiple reaction runs; each run contributes only one data point.

Must start data acquisition at $t=0$, the only time concentrations are known.

There is a better way: integrated rate laws.

