Enthalpy-Entropy Compensation

- Strategy of adding binding groups to increase ligand affinity works.
- But, for additive weak interactions, increased binding enthalpy is compensated by decreased entropy.

...but thermal energy within deeper potential well doesn't sample as many conformations; so, entropy lost.

Multiple Interactions ("Multivalency"): Building Better Ligands & Catalysts

Possible reasons for designing/understanding multiple interactions:

<u>Stronger binders</u>

≻Higher-affinity pharmaceuticals

Improved organometallic ligands

• More selective binders

Decrease non-specific drug targeting

Improved response of analytical detectors

Faster catalysts

Better-designed synthetic enzymes

Improved polymerization catalysts

• More selective catalysts

>Enhanced enantioselectivity, substrate specificity

Multivalency ("Chelate Effect"): Concepts

difference illustrates advantage/ disadvantage of connecting ligands. Effect is primarily entropic.

 $K_{\text{sialic acid}} = 400 \text{ M}^{-1}$

α = **0.25**

Works well for very small ligands with little conformational freedom.

Works less well with larger ligands.

Example:

Influenza hemagglutinin protein. Binds multiple sialic acid molecules on your cells at once.

Works well for very small ligands with little conformational freedom.

Works less well with larger ligands.

Example:

Influenza hemagglutinin protein. Binds multiple sialic acid molecules on your cells at once.

 $\Delta G_{\text{sialic acid}}$ = -3.3 kcal/mol

α = 0.25

 $\Delta G_{\text{sialic dimer}}$ = -5.8 kcal/mol

Enhancement Factor (β)

 α is a bit unfair for multivalent pharmaceuticals;

Even though ΔG values aren't additive, divalent molecule still a better ligand for influenza than monovalent.

 \mathbf{O}

 CO_2

 CO_2

Enhancement Factor (β) $\kappa_{A} \longrightarrow \beta = \frac{\kappa_{A_{2}}}{\kappa_{A}}$

 $K_{\text{sialic acid}} = 400 \text{ M}^{-1}$

β = 100

 $K_{\text{sialic dimer}} = 40000 \text{ M}^{-1}$

Phenomenological Kinetics

How do we understand, predict rates of reactions from experimental data?

What do we even mean by "rate"? Consider:

$$N_2O_5 \rightarrow 2 NO_2 + \frac{1}{2}O_2$$

Could define rate =
$$\frac{d[N_2O_5]}{dt}$$
 or $\frac{d[NO_2]}{dt}$ or $\frac{d[O_2]}{dt}$
For this reaction,
by definition from
stoichiometry, $-\frac{d[N_2O_5]}{dt} = \frac{1}{2} \frac{d[NO_2]}{dt} = 2 \frac{d[O_2]}{dt}$

(For every molecule of N_2O_5 consumed, 2 of NO_2 created, etc...)

Understanding Reaction Rates

$$N_2O_5 \rightarrow 2 NO_2 + \frac{1}{2}O_2$$

Measuring Reaction Rates

 $N_2O_5 \rightarrow 2 NO_2 + \frac{1}{2}O_2$

Measuring Reaction Rates

 $N_2O_5 \rightarrow 2 NO_2 + \frac{1}{2}O_2$

Understanding Reaction Rates

$$N_2O_5 \rightarrow 2 NO_2 + \frac{1}{2}O_2$$

Phenomenological Kinetics

Most important question:

How does rate depend on reactant concentration?

For any reaction, can write a **rate law**:

rate = k[reagent]^x

k: rate constant *x*: reaction order

- k and x are determined experimentally.
- k = f(rxn, temp) and is always a positive number.
- *x* has no necessary relationship to the coefficients of the balanced chemical equation. Is usually an integer or fraction. Can be zero.

 $rate = k[reagent]^x$

Problem: rate changes, over time, as [reagent] changes.

So, if we don't have a good way of monitoring [reagent], how do we determine *k* and *x*?

Solution: [reagent] is defined at *t* = 0, and is effectively constant at beginning of reaction (first few %)

So measure multiple rates at t = 0 for different starting concentrations [reagent], solve for k and x.

- Consider: $2 \text{ NO} + \text{Br}_2 \rightarrow 2 \text{ NOBr}$
- For $rate = k[NO]^{x}[Br_{2}]^{y}$, what are k, x, y?

Solution: Vary each concentration independently; solve for variables.

Run #	[NO] ₀ (M)	[Br ₂] ₀ (M)	${d[Br_2]/dt}_0$
			(M/min)
1	1.00	1.00	1.3 × 10 ⁻³
2	1.50	1.00	2.93 × 10 ⁻³
3	1.50	3.00	8.78 × 10 ⁻³

(answer on the board)

Consider:	$2 \text{ NO} + \text{Br}_2 \rightarrow 2 \text{ NOE}$	Br
For	<i>rate</i> = <i>k</i> [NO] ^x [Br ₂] ^y ,	what are <i>k</i> , <i>x</i> , <i>y</i> ?

Solution: Vary each concentration independently; solve for variables.

Run #	[NO] ₀ (M)	[Br ₂] ₀ (M)	{ <i>d</i> [Br ₂]/ <i>d</i> t} ₀ (M/min)
1	1.00	1.00	1.3 × 10 ⁻³
2	1.50	1.00	2.93 × 10 ⁻³
3	1.50	3.00	8.78 × 10 ⁻³

 $d[Br_2]/dt = k[NO]^{x}[Br_2]^{y}$

 $d[Br_2]/dt_{(run 1)} = k[NO]_{(run 1)} [Br_2]_{(run 1)}^{y}$ $d[Br_2]/dt_{(run 2)} = k[NO]_{(run 2)} [Br_2]_{(run 2)}^{y}$

For runs 1 and 2, we made $[Br_2]$ the same. $[Br_2]_{(run 1)}^y = [Br_2]_{(run 2)}^y$.

$$\frac{d[Br_2]/dt_{(run 1)}}{d[Br_2]/dt_{(run 2)}} = \frac{[NO]_{(run 1)}^x}{[NO]_{(run 2)}^x}$$
$$\frac{1.3 \times 10^{-3} \text{ M/min}}{2.93 \times 10^{-3} \text{ M/min}} = \frac{(1.00 \text{ M})^x}{(1.50 \text{ M})^x} = \left(\frac{1.00 \text{ M}}{1.50 \text{ M}}\right)^x$$

Solution: x = 2.

Using the same method for runs 2 and 3, $([NO]_{(run 2)}^{x} = [NO]_{(run 3)}^{x}),$ y = 1;

Plug these x and y into any relation, get $k = 1.3 \times 10^{-3} \text{ M}^{-2} \text{min}^{-1}$.

- Pros: Decomposition or other subsequent reactions play no role in initial rate, so data very reliable.Good for enzyme, polymerization kinetics.
- Cons: Have to perform multiple reaction runs; each run contributes only one data point.

Must start data acquisition at t = 0, the only time concentrations are known.

There is a better way: integrated rate laws.