## Discussion Question

1. Although gaseous methyl isocyanide $\left(\mathrm{CH}_{3} \mathrm{NC}\right)$ can be stably isolated and bottled at low temperature, at 273 K it isomerizes over the course of hours to acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, which condenses from the gas as a liquid. The graphs below show how the measured pressure in a sealed container of $\mathrm{CH}_{3} \mathrm{NC}$ drops with time as the gas is converted to $\mathrm{CH}_{3} \mathrm{CN}$ liquid.

$$
\mathrm{H}_{3} \mathrm{C}-\mathrm{N}=\mathrm{C}: \longrightarrow \mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{~N}
$$


a) Are these graphs consistent with first-order kinetics (in $\mathrm{CH}_{3} \mathrm{NC}$ )? Can you estimate a rate constant $k$ from these graphs?
b) From the integrated rate law for this process and your rate constant $k$, estimate the half-life $t_{1 / 2}$ for this reaction (where $\left[\mathrm{CH}_{3} \mathrm{NC}\right]_{t} /\left[\mathrm{CH}_{3} \mathrm{NC}\right]_{0}=0.5$ ). Does this calculated $t_{1 / 2}$ match the data on the graph?

1. a) $P \propto\left[\mathrm{CH}_{3} \mathrm{NC}\right]$, so

$$
\frac{P_{t}}{P_{0}}=\frac{\left[\mathrm{CH}_{3} \mathrm{NC}_{t}\right.}{\left[\mathrm{CH}_{3} \mathrm{NC}\right]_{0}}
$$

If the reaction displayed first-order kinetics, the graph could be fit to $\frac{P_{t}}{P_{0}}=\mathrm{e}^{-k t}$,
or to
$\ln P_{\mathrm{t}}=\ln P_{0}-k t$.
If you use this second equation, the slope of the graph is equal to $k$. Here, $k \sim 5 \times 10^{-5} / \mathrm{sec}$.
b) $\frac{P_{t}}{P_{0}}=\frac{\left[\mathrm{CH}_{3} \mathrm{NC}\right]_{t}}{\left[\mathrm{CH}_{3} \mathrm{NC}\right]_{0}}=0.5=\mathrm{e}^{-k t}$.

$$
t_{1 / 2}=\frac{\ln (0.5)}{k}
$$

= 14,000 sec.

## Background Signal in Kinetic Data



What if the $\mathrm{CH}_{3} \mathrm{NC}$ was contaminated with 150 torr of air?

## Background Signal in Kinetic Data



Fit to

$$
Y_{t}=Y_{0} \mathrm{e}^{-k t}
$$

$[\mathrm{A}]_{0}=150$ torr
$k=5 \times 10^{-5} / \mathrm{sec}$
$t(\mathrm{sec})$

## Background Signal in Kinetic Data



Fit to

$$
\begin{gathered}
\mathrm{Y}_{t}=\mathrm{Y}_{0} \mathrm{e}^{-k t} \\
\mathrm{Y}_{0}=281 \text { torr } \\
k=1.4 \times 10^{-5} / \mathrm{sec} \\
\quad \text { wrong! }
\end{gathered}
$$

Fit to

$$
\begin{aligned}
& Y_{t}=Y_{0} \mathrm{e}^{-k t} \\
& \mathrm{Y}_{0}=150 \text { torr } \\
& k=5 \times 10^{-5} / \mathrm{sec}
\end{aligned}
$$

Fits search for only 2 variables ( $\mathrm{Y}_{0}$ and $k$ ).

## Background Signal in Kinetic Data



## Background Signal in Kinetic Data



## Background Signal in Kinetic Data



