
Chemistry 4011/8011 Friday, September 22 
 

Problem Set 3 
Due: In class, Friday, September 29 

 
 
1. a) Based on the association constants shown below, and the definitions of 

cooperativity discussed in class and in MPOC Chapter 4, does the binding of 
cis-1,3-cyclohexanediol in the last equation show positive cooperativity? (I.e., 
is α > 1 or < 1?) 

 
 b) By how many kcal/mol is the binding cooperative in a positive or negative 

sense? Has engineering the entropy of this system helped or hurt? 
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2. The Method of Initial Rates isn’t often used for reactions in which a reagent or 
product concentration can be monitored continuously; in these cases, the dataset 
is typically fit to an integrated rate expression (like in Problem 3 below). However, 
in cases where decomposition or complex successive reactions can follow an 
initial reaction of interest, the Method of Initial Rates can work better than data 
fitting. Kettling et al. used this method, for example, to show that fluorescence 
correlation spectroscopy could be used to characterize the activity of extremely 
low enzyme concentrations.1 His data on the restriction enzyme EcoRI, which 
cuts a DNA substrate (“S”) is shown below. 

 
 

 
 
These curves didn’t fit integrated rate laws well, but the Method of Initial Rates did 
work here. For 
 

xEcoRIk
dt

d ][]S[
obs−= , 

 
what are kobs and x? 
 

                                                 
1 Kettling, U.; Koltermann, A.; Schwille, P.; Eigen, M. Proc. Natl. Acad. Sci. USA 1998, 95, 1416-1420. 



3. The complex TpMsCuNO reacts with excess NO to yield N2O and TpMsCuNO2. 
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 The reaction can be monitored by UV-vis spectroscopy, as shown in the graph 

below. In this graph, the loss of TpMsCuNO corresponds to a decrease in 
absorbance at λmax(TpMsCuNO) = 472 nm, and gain of product TpMsCuNO2 
corresponds to gain in absorbance at λmax(TpMsCuNO2) = 778 nm. The reaction 
was carried out using a 4.8 mM solution of TpMsCuNO and a >10 fold excess of 
NO. A chart of absorbance vs. time data, collected at 472 nm and 778 nm, are 
posted on the class web site. In this problem, you will fit this data to integrated 
rate expressions; for each problem below, show your answer as a graph with the 
fit line and results on the graph (or at least somewhere that we can figure out 
which data goes with which fit). 

 
 

 
 
 

a) If this process were first order in TpMsCuNO, the integrated rate expression for 
this process would be 
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 For this part of the problem, assume that the absorbance measured at 472 nm 

(A472) is proportional to [TpMsCuNO]t/[TpMsCuNO]0, and that A472 = 0 for 
[TpMsCuNO] = 0. Perform a linear least-squares fit of the A472 data to either of 
the expressions above, and use the output of the fit or the slope of the curve 
(for the second equation) to estimate k. You can do this in any number of 
programs, including Microsoft Excel, Kaleidagraph, and others, by using the 
pre-set fits that come with the program. 

 
b) Next, following either the instructions in Appendix 1 or 2 of this problem set, 

perform a nonlinear least-squares fit of the same data to the same equation to 
determine k. You may want to use Kaleidagraph to do this (instructions at the 
end of this Problem Set). 

 
c) As we discussed in class, it is possible to avoid the assumptions we made 

above by fitting to the phenomenological, first-order rate equation 
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 where Y is an observable (such as A472). Fit the A472 rate data to this equation, 

using nonlinear least-squares and allowing the fit to optimize values for A0 and 
A∞. What is your calculated k, and are the other variables reasonable? Does 
getting rid of outlier data points improve your fit? 

 
d) Repeat part (c) for the A778 data to evaluate the same rate constant k from 

∂[TpMsCuNO2]/∂t. Remember that the rate equation will not be exactly the 
same as the one in (c). How does your value for k compare? 



Problems to try on your own: 
 
• David Blauch (Davidson College) has created a Java applet 

(http://www.chm.davidson.edu/ChemistryApplets/kinetics/MethodOfInitialRates.html) that 
illustrates how a triiodide clock reaction, along with the Method of Initial Rates, 
can be used to determine the order of the following reaction: 

 
H2SeO3 (aq) + 6 I

-
 (aq) + 4 H+ (aq)  →  Se (s) + 2 I3

-
 (aq) + 3 H2O (l) 

 
 Use the applet to determine the order of this reaction in [H2SeO3] and [I

-
]. Show 

your work; please don’t just report values. 
 
 (For the website above to work, you must have Sun Microsystems’ Java Runtime 

Environment installed on your computer; you can find this at http://www.java.com. 
The answer to this problem is posted in the Problem Set answer key.) 
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Problem Set 3, Appendix 
Nonlinear Least-Squares Curve Fitting with Kaleidagraph 

 
 
There are not so many graphing programs that use nonlinear least-squares fitting; 
Synergy Kaleidagraph is one of the simplest. (You can also do nonlinear least-
squares fitting on Microcal Origin, Mathworks MATLAB, or Wolfram Mathematica, if 
you have access to them and know how to use them.) By comparison, Kaleidagraph 
is much easier to use for curve fitting, but you will have to go to the Microcomputer 
Lab (176 Kolthoff), use the demo version, or purchase it to use it. (The demo version 
is available at http://www.kaleidagraph.com/. This version lasts for 45 days, and will 
only create graphs with “Demo Copy” in big letters written across them. Turning these 
in is just fine with me.) Excel, on the other hand, will require you to do more 
spreadsheet manipulation, but many of you probably own Excel already. 
 
To use Kaleidagraph for nonlinear least-squares fitting: 
 
1.  Open Kaleidagraph and click File, Import, Excel to import your data spreadsheet. 
 
2. Graph your data by clicking Gallery, Linear, Scatter. Pick the appropriate 

columns for the x- and y-axes, and create a New Plot. 
 
3. To fit any of your data to a custom function, click Curve Fit, General, fit1. (Fit1 is 

already defined, but we will change it. If you want to create and save functions 
rather than just editing the one in the program, click Curve Fit, General, Edit 
General and create new functions.) 

 
4. Check the data box you want to fit. Then, click Define to create your function. The 

function has to have a specific form in which the independent, x-axis variable 
(e.g., time) is named “m0” and all other variables to be optimized are named “m1”, 
“m2”, etc. The equation is then followed by initial guesses for the optimized 
variables. So, for example, if you were graphing UV-vis absorbance data and you 
wanted to fit it to the equation 

 
bceA kt += −

λ , 
 
 you might type 
 

m1*e^(-m2*m0) + m3; m1 = 1; m2 = 0.01; m3 = 0.1 
 
 in the function box. Importantly, none of your initial guesses can be set to a value 

of 0, or you will get an error. In addition, as is probably obvious from the example 
above, the independent variable (Aλ) must be alone on the left-hand side of the 
rate equation to set up Kaleidagraph’s fit. 



 
5. Click OK, and a fit curve should appear in your data window, along with the 

optimized values and other information from your fit. If you don’t like your fit, you 
can remove it from the graph by going back into Curve Fit, General, fit1 and 
deselecting the check box for the fitted data. Click OK, and the fit curve and fit 
data disappear. If you get a “Singular Coefficient Matrix” error during your fit, it is 
probably because your initial guesses were really far off; try new guess values. 

 


