
Section Question 7

Angela Follett and Kris McNeill have investigated the mechanism of how the pollutant trichloroethylene (**TCE**) is degraded to *cis*- and *trans*-dichloroethylene (**DCE**) in the environment and in model solutions.¹ Using the model reductant cobaltocene (L_2Co), they noted that the ratio of products produced depends on the concentration of reductant. To explain this, they suggested the following mechanism:

$$\overset{a}{\xrightarrow{}} \overset{a}{\xrightarrow{}} \overset{k_{1}}{\xrightarrow{}} \overset{a}{\xrightarrow{}} \overset{a}{\xrightarrow{}}$$

- a. Sketch a potential energy diagram for the overall process. Helpful to know:
 - cis-DCE' (radical) is slightly more stable than trans-DCE';
 - *cis*-DCE⁻ (anion) is significantly more stable than *trans*-DCE⁻.
- b. What might you guess about the relative energies of the *cis* and *trans*transition states for the reduction of DCE[•] to DCE⁻, based on the information above?
- c. Follett and McNeill hypothesized that the relative amounts of *cis* and *trans*-**DCE** produced varied with [L₂Co] because, under their reaction conditions, k_1 , k_{1} , $k_{obs,trans}$ and $k_{obs,cis}$ were of similar magnitude. What would determine the ratio of products under the extreme case [L₂Co] \rightarrow 0? What about where [L₂Co] $\rightarrow \infty$? Under which of these cases would the Curtin-Hammett principle apply?

¹ Follett, A. D.; McNeill, K. J. Am. Chem. Soc. 2005, 127, 844-845.