Midterm Exam 1
 Answer Key

Exam 1 Mean: 68
Exam 1 Median: 68
Exam 1 St. Dev.: 14

1. a) REGARDLESS OF WHETHER THE STRUCTURE
is 3 OR 4 . THE METHYL GROUP IS ONLY COUPLED TO ONE PROTON, H14. THIS RESULTS IN A
 Doublet at $\delta=1.3 \mathrm{ppm}$.

THE $\triangle \delta$ FOR THIS DOUBLET
$150.013 \mathrm{ppm}, A N D$ so

$$
J=(0.013 \mathrm{ppm})(500 \mathrm{MHz})
$$

$=6.5 \mathrm{~Hz}_{2}$ (ignoring the whole $\mathrm{MHz} \rightarrow \mathrm{Hz}_{2}$ conversion bit)

H14 as partner: 5 pts.
$: J=6.5 \mathrm{~Hz}: 5 \mathrm{pts}:$

- $\quad \ldots \ldots$
b) THE only real difference between the two spectra is the chance observed in the multiple at $\delta=2.77 \mathrm{ppm}$. ThIS is PRETTY obvious from the closeups on pales 6 AND 9. (THE SPECTRUM ALSO LODKS DIFFERENT AT $\delta=1.3 \mathrm{pPM}$, BUT REMEMBER, IRRADIATION EFFECTIVELY obliterates information at tie irradiated FREQUENCY.)

Decoupling eliminates the coupling
between the methyl and hit, and leaves ONLY COUPVING BETWEEN HIU AND HISaX AND HIS. AS A RESULT, THE "SEPTET" IS reduced to a doublet of doublets.

, $\delta=2.77$ ppm is CHANGED: 5 pts.,
) SPECIFICALLY POINTING OUT THAT
1 MULTIPLICITY IS REDUCED
, TO A DOUBLET OF DOUBLITS: EpIS.
c) THE dd can be analyzed by the usual inverse splitting tree:

HOWEVER, THIS information doEs Not help distinguish between 3 AND 4.
the reason is because each structure
HAS HIS INVOLVED IN ONE TRANS
COUPLING $\left(\phi=180^{\circ}\right)$ AND ONE GAUCHE COUPLING $\left(\phi=60^{\circ}\right)$.

$$
m^{3}
$$

IN EITHER CASE,

$$
\begin{aligned}
\phi_{H_{14}-H_{15 a x}} & =180^{\circ}, \\
J & =13 H_{2} \\
\phi_{H_{14}-H_{15 e q}} & =60^{\circ} \\
J & =5,5 H_{2}
\end{aligned}
$$

SO, INFORMATION DOES NOT HELP (THOUGH, IF MOLECULE WERE DIFFERENT, IT CERTAINLY MIGHT HAVE).
i "NO" AS ANSWER: 3 ptS.
1
EXPLANATION OF WHY NOT BASED ON GEOMETRY OF 3 , AND $4: 1 \mathrm{pt}$.
d) NOE EXPERIMENTS ARE DESIGNED TO
illustrate tarough-space rather than THROUGH -BOND INTERACTIONS, AND THUS THEY WERE IDEALLY SUITED TO ANSWER AMY'S QUESTIONS ABOUT THE SPATIAL RELATIONSHIP BETWEEN HIM AND HIT. IRRADIATING HIT PRODUCED EXCITATION TRANSFER TO HIM (AS HHOWN BY THE POSITIVE PEAK AT $f=4.3 \mathrm{ppm}$ ON PAGE II, BUT IRRADIATING THE METHYL PROTONS DID NOT. AS A RESULT, HIT MUST BE SPATIALLY CLOSE TO H19, AND THE METHYL GROUP MUST NOT BE. THIS IS ONLY CONSISTENT WITH STRUCTURE 3 :

TOO FAR for noe

BOTH TOD FAR FOR NOE (IN MY HUMBLE OPINION) $\stackrel{4}{\sim}$
"YES": 5 pts.
IDENTIFYING 3 as CORRELT STRUCTURE: 3 pts.
JUSTIFYING ANSWER in TERMS OF SPATIAL distance between hiland mig: 2 pts.
2.a)

SCORING MATRIX

FOR ALL
partners.

ROUTE TO SOLVING $2(a)$:
I started, off the bat, BY ASSICNING THE WAY-UPFIELD PEAKS TO - $\mathrm{Si}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}$. $\delta \sim O$ WORKS WELL FOR SILANE (JUST LIKE RMS). integrated intensities of these were 9 \& 6, RESPECTIVELY. THIS ALLOWED ME TO DETERMINE ALL OTHER INTENSITIES (SEE NEXT PAGE).

WE NEED TO ASSIGN 6 PROTONS, AND ITS lIKELY that all are coupled to one ANOTHER. SO WERE YOKING FOR MULTIPLES, IT JUST SO HAPPENS THAT THERE IS 6 H WORTH OF MULTIPLES: $\delta=3.95$ (1H) quint!

$$
\begin{array}{ll}
\sim 3.47 & (2 H) \\
2.3-2.5 & (2 H) \\
1.95 & \text { (ALMOST } 1 H)
\end{array}
$$

$H_{l a}, H_{i b}$ and H_{2} are heteroatom substituted, BUT ONLY H_{2} COULD GIVE A SIMPLE QUINTET (w) 4 coupling partners). H Ha ADD $H_{1 b}$ MUST $B E$ 8~3.47. IF $H_{1 a} \& H_{1 b}$ WERE EQUVGLENT, THEY wOULD \downarrow

Give only a doublet. So, they must be INEQUIVALFNT, \therefore EACH MUST BE A $d d$. THIS IS IN FACT OBSERVED. (SEE NEXT PAGE.)
$3 a$ \& $3 b$ PROBABLY inEQUIVALENT IN THE SAME WAY:

TO work RIGHT, EACH H MUST

HAVE THREE PARTNERS. THIS GIVES $d d d$ ($\times 2$), SHOWN ON NEXT PAGE, MULTIPLES IS NOT A ddq; DISTANCES BETwEEN PEAKS IS N'T RIGHT FOR THIS.

$$
(\underset{\text { exaggerated. }}{1})
$$

5 is THEN TRIPLET AT $f=1.95$, COUPLED TO $3 a$ \& $3 b$.

b) After assigning above resonances, ONLY PROTECTING GROUPS REMAIN.

THIS EXPLAINS
UPFIELD PEAKS.

REMAINING:

$$
\begin{aligned}
& \delta=7.26 \\
& 6.9 \\
& 4.48 \\
& \text { s } \\
& 3.8 \\
& d \text { (obscured by } \mathrm{CHCl}_{3} \text {) } \\
& d \\
& \text { s } \\
& \text { s } \\
& \left.2 H] \begin{array}{l}
\text { ARYL; } \\
2 H
\end{array}\right] \begin{array}{l}
\text { Looks } \\
\text { para-subst. } \\
\text { BY SYMMETRY }
\end{array} \\
& 2 \mathrm{H}] \begin{array}{l}
-\mathrm{CH}_{2} \\
\text { Not COUPLED } \\
\text { TO ANYTHING? }
\end{array} \\
& 3 \mathrm{H}] \begin{array}{c}
\text { METHyL arouse? }
\end{array}
\end{aligned}
$$

SOME OF THIS IS CLEARLY ARYL, AND MIGHT BE para-SUBSTITUTED ARYL, AT ANY RATE, MUST BE $4 H$-ARYL, maSS $=76 \quad\left(-\mathrm{C}_{6} \mathrm{H}_{4}{ }^{-}\right)$. THIS LEAVES MASS 45 UNEXPLAINED, IF OTHER H'S ARE DUE TO $-\mathrm{CH}_{3}$ AND $-\mathrm{CH}_{2}-$, (mass: 15 AND 14), THAT LEAVES MASS 16 UNEXPLAINED: ONE OXYGEN ATOM. $\begin{aligned} &=-P \\ &-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3} \\ & \tau_{\text {NEXT TO OXYGEN, AND ARYL, }}\end{aligned}$ MASS $=121$. SO PRETTY DOWNFIELD.

c) CENTER FOUR PEAKS ARE REALLY BIG, AND OUTER FOUR ARE TINY:

THIS is BECAUSE $H_{\text {Ia }}$ AND $H_{I b}$ ARE VERY SIMILAR, CHEMICAL SHIFTS ARE VERY CLOSE,

$$
\Delta v\left(=v_{l a}-v_{l b}\right)
$$

IS SMALL COMPARED TO $J_{H_{1 a}, H_{1 b}}$.
WHEN THIS HAPPENS, PEAKS DISTORT.
(EXPLAINED IN ENCYCLOPEDIC DETAIL AN CREWS, $P P .111-125$.

1 ANYTHING MENTIONING la -lb
inequivalence: $\quad 5 \mathrm{pts}$
ANYTHING MENTIONING FACT THAT la \& lb ARE
similar/close in CHEMICAL SHIFT:

2 pts
1 $\Delta \nu / J$ RELATIONSHIP:
3 pts
d) THE RELATIONSHIP BETWEEN INTEGRAL INTENSITY AND \# OF PROTONS ONLY WORKS if protons have the opportunity to relax FULLY DURING FID COLLECTION (I.E., if COLLECTION TIME $\gtrsim 5 T_{2}$). MAIN MECHANISM of RELAXATION is TRANSFER OF ENERGY TO NEARBY, LIGHTWEIGHT NUCLEI. BUT HS is only bound to one nucleus - C_{5} and there are few other nuclei nearby. so Hs RELAXES SLOWLY, AND itS integral is too smalls, (Just like a quaternary CARBON iN ${ }^{13} \mathrm{C}$ NMR.)

