Midterm Exam 1 Answer Key

Exam 1 Mean: 57
Exam 1 Median: 58
Exam 1 St. Dev.: 16

1. a) IN THE FIRST PART OF THIS QUESTION, YOU

ARE NOT ASKED TO DISTINGUISH BETWEEN

DIASTEREOMERIC STRUCTURES JUST YET:
RATHER, YOU ARE ASKED TO ASSIGN SPECTRUM

OF 1, 'H SPECTRUM OF 1 HAS SOME

VERY PROMINENT FEATURES:

- 6 OLEFIN RESONANCES;
- A SHARP $3 H$ SINGLET THAT SCREAMS "METHYL GROUP";
- a very close oH pAir of sinGlets THAT ARE 2 MORE METHYLGROUS:
- A TOTAL OF 4 PROTONS IN THE ALKYL REGION THAT ARE AN AWFUL SPLIT-UP MESS;
- ONE LONE LH TRIPLET Q 4.1 PPM THAT MIGHt BE α TO A HETEROATOM.

CHART ASKS ONLY TO ASSIGN α TO HETEROATON $\left(H_{G}\right)$ AND 6 OLEFIN RESONANCES. ASSIGNING HG TO OF $=4.10$ PPM MAKES VERY GOOD SENSE ITS A TRIPLET, AND PROBABLY COUPLES W $H_{5 a} \& H_{5 b}$ THE SAME. QUESTION IS, WHICH PEAK IN OLEFINS IS WHICH?

YOU MIGHT IMAGINE THAT, FOR EACH OLEFIN,

(2 OF EACH) AND SURE ENOUGH, THAT'S WHAT WE HAVE. BUT WHICH is WHICH? TWO WAYS TO APPROACH THIS:

- PRETSCH TABLES. CHEmICAL SHIFT PREDICTIOWS FROM P. 170 SAY

THESE AREN'T EXACT, BUT THEY ARE VERY close.

- think about it. ester carbonyl is very ELECTRON - WITHDRAWING, \& WILL SHIFT EVERYTHING DOWNFIELD. SO DOWNFIELD ONE IS 2 OH

ONE METHOD TH TAT DIDN'T WORK FOR ASSIGNiNG WHIICH IS WHICH: COUPLING CONSTANTS. COUPLING IS IDENTICAL FOR BOTH TRIOS OF MULTIPLES.
$J_{1}=1.5 \mathrm{~Hz}$

$$
\begin{aligned}
& J_{1}=1.5 \mathrm{~Hz} \\
& J_{2}=10.5 \mathrm{~Hz}
\end{aligned}
$$

Format for labeling double bonds:

il point for each box, all or nothing (no $\frac{1}{2}$ points) i
b) THIS QUESTION ASKS, WHICH IS ON THE SAME fACE OF tHE THF RING - THE OLEFIN OR METHYL GROUP? $\frac{1}{n}$: NOE IS TRANSFERRED TO OLEFIN AND TO PAIR OF METIVYLS AT $8=1,53$. ACTUALLY, WHATS COOL ABOUT THIS NOE IS THAT IT II ONLY TRANSFERRED TO TWO OF THREE OLEFIN HIS:

free rotation about this bond...
so H_{6} IS ON SAME SIDE AS OLEFIN.

2: NOE IS TRANSFERRED TO METHYL (ACTUALLY ALL. THREE METHYLS).

IN BOTH CASES, THERE ARE BOTH POSITIVE \& NEMATIVE SIMNALS FOR HYalb AND HEals. VERY DIFFICULT TO DETERMINE WHETHER THIS IS ACTUALLY NOE OR JUST SUBTRACTION ERROR.
b. (14 pts) On the structures below, indicate which diastereomer represents which molecule for $\mathbf{1}$ and $\mathbf{2}$ by drawing all of the NOE interactions observed for the correct structure with curved arrows. (If you like, draw an X through the incorrect diastereomeric structures.)
1:

2 :

+2 POINTS
EACH
FOR CHOOSING
CORRECT
DIASTEREOMER.
(CORRECT NOES LABELED ON INCORRECT diastereomer receive full credit.)
2. a) THE FIRST THING TO DO HERE

WAS TO COMPARE SPECTRA OF 3 AND 5 .
WHAT CHANGES? BEST WAY: OVERLAP SPECTRA \& HOLD UP TO THE LIGHT. (SEE NEXT

PAGE FOR MY VERSION OF THIS.) SOME THINGS have clearly stayed the same. phenyl group protons still there. (so, -tBDPS probably still there.) 3 has one olefin proton $\left(\mathrm{H}_{7}\right)$, AND it's still there, 3 has two PROTONS α TO OTBPPS $\left(H_{8 a} / b\right)$ THAT LOOK LIKE THEY ARE STILL AT $\delta=4.2$ ppm. WE WOULD EXPECT H_{3} (α TO ALCOHOL) TO SHIFT, AND IT DOES. PEAKS CORRESPONDING TO Hyalb, Heals ARE paly blobs in both SPECTRA. - $\mathrm{CH}_{3}\left(\mathrm{H}_{\mathrm{q}}\right)$ LOOKS FINE. IMPORTANT:

I CANT FIND THE ALCOHOL PROTON. THIS IS NOT UNUSUAL, MAY BE BURIED UNDER OTHERS.

IF $3 \rightarrow 4$ HAD SUCCEDED, WOULD EXPECT NEW RESONANCES:

NEW α - heteroatom
 NEW OLEFIN PEAKS: $4.9,5.0 \mathrm{ppm}$ COOD that they don't Split EACH OTHER)

PEAKS: $3.9,4.1$ DOUBLETS. INEQUNALENT.

all this makes sense. but there are three ODD THINGS: ABOUT $3_{\sim}^{3} \rightarrow \frac{5}{4}$.

- 9 H wORTH OF METHYL GROJPS ARE GONE!

SINGE WE kNOW TBDRS IS STILL THERE,
must be that tams has fallen off.

- NEW PEAK © 2.4 ppm, 1H, DOUbLET.
- H_{3} has chanGed from a quartet

$$
J_{1}=J_{2}=J_{3}
$$

TO A DOUBLET OF TRIPLETS, SO, WHILE IT HAS LOST A PARTNER, IT HAS GAINED A NEW ONE. (MAYBE THAT NEW DOUBLET?)

SO, TO FILL OUT THE CHART...
a. (16 pts) Based on differences between the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3}$ and $\mathbf{5}$, Chris concluded that methallyl chloride had added to the alcohol group as planned, but that something about the rest of the molecule had changed. For each of the resonances listed on the chart below, either assign the resonances of 5 to a (numbered) proton that corresponds to one in the proposed structure 4 , or check the box that indicates that the proton does not correspond to any proton in structure 4.

Chemical shift (δ, ppm), 5	Assignment (" H_{N} ")	OR	Does not correspond to proton in 4
5.42	H_{7}	OR	
5.00	$H_{12 a}$	OR	
4.91	$H_{12 b}$	$O R$	
4.22	$H_{8 a / b}$	$O R$	
4.14	$H_{10 a}$	$O R$	
4.02	H_{3}	$O R$	
3.89	$H_{10 b}$	$O R$	
2.43		OR	

b) $H_{3}(d t)$ AND $H_{\text {NEw }}(d)$ ARE COUPLED to
$(2.43 \mathrm{ppm})$
EACH OTHER ($J=2 \mathrm{~Hz}$) AND CAN'T BE
assicined to any pair of protons in 4.
${ }^{\prime} 5$ POINTS FOR ${ }^{\prime} \mathrm{H}_{3} "$
15 POINTS FOR DOUBLET @ 2.43 pPM
1 POINT FOR ANY DISCUSSION.
C) MOLECULE HAS LOST -TMS, AND HAS GAINED 1 PROTON THAT CAN COUPLE W/ H_{3} WITH VERY SMALL J.

ALKYNE SHIFT

5 POINTS FOR CORRECT STRUCTURE.
3 POINTS FOR EXPLANATION OF $\delta=2.43$ PPM NEW PEAK. (STRUCTURE CAN BE INCORRECT.)

3 POINTS FOR EXPLANATION OF COUPLING TO H_{3}. STRUCTURE CAN BE INCORRECT, BUT COUPLING MUST MaKE SENSE.)
d. (15 pts) The ${ }^{13} \mathrm{C}$ NMR of 5 has three groups of peaks: $110-145 \mathrm{ppm}, 60-85 \mathrm{ppm}$, and $10-40 \mathrm{ppm}$. Does the number of peaks in each group correspond to the number of equivalent carbons in your proposed structure for 5 ? In the chart below, draw your proposed structure and circle the carbons that you would expect to observe in each chemical shift range. Indicate where multiple carbons are equivalent.

	Chemical shift range (ppm)	Expected resonances from proposed structure of 5 (circle carbons)
AROMATIC / ALKENE REGION	110-145 number of peaks:	
$\begin{aligned} & \text { Q-HETEROATOM/ } \\ & \text { ALKYNE } \\ & \text { REGION } \end{aligned}$	60-85 number of peaks:	
ALKANE REGION	$10-40$ number of peaks:	
1	INT FOR $15 .$ porn	AH CORRECT CIRCLE UP TO CORRECT STRUCTURES STILL GET FOR CONSISTENT CIRCLES.)

e. (12 pts) One of the resonances in the ${ }^{13} \mathrm{C}$ DEPT spectra of $\mathbf{5}$ is inconsistent with the number of protons attached to the corresponding carbon. Which resonance? Which carbon in the structure of $\mathbf{5}$ does this resonance correspond to? Why is the DEPT intensity incorrect for this carbon?

which carbon? (draw as substructure)

4 POINTS:
why?

$$
\begin{aligned}
& 110-140 \text { REGION SHOWS } 2 \text { QUATERNARY/ } \\
& \text { NO H CARBONS, BUT MOLECULE ONLY }
\end{aligned}
$$

HAS ONE. REASON: DEPT METHOD

$$
\text { ASSUMES THAT ALL } \left.J^{13} C-{ }^{\prime} H\right) \text { VALUES }
$$

$$
\text { ARE THE SAME, AROUND } 135 \mathrm{~Hz} \text {. }
$$

BUT

$$
{ }^{1} H-{ }^{13} C \equiv-2
$$

$$
\text { 心 } 刀
$$

$$
J=250 \mathrm{~Hz}
$$

SO, DEPT INTENSITY IS SCREWED UP.

