Exam 1 Answer Key

Exam 1 Mean: 67
Exam 1 Median: 67
Exam 1 St. Dev.: 17

1. Shikimic acid has some characteristic types of protons that should appear at distinct chemical shift values. From this info, we can conclusively assign one proton- H_{2}, at $\delta=6.38$ ppm—but we'll need to look closer to assign anything else. It probably helped at this point to go through the multiplets and calculate coupling constants for each:

δ (ppm)	Coupling constants $\mathbf{J}(\mathrm{Hz})$
6.38	$J_{1}=1.5 \mathrm{~Hz}$ $J_{2}=2.4 \mathrm{~Hz}$ $J_{3}=4.4 \mathrm{~Hz}$
4.34	$J_{1}=J_{2}=4.4 \mathrm{~Hz}$ $(+$ some small ones?)
3.93	$J_{1}=5.6 \mathrm{~Hz}$ $J_{2}=7.6 \mathrm{~Hz}$ $J_{3}=9.2 \mathrm{~Hz}$

δ (ppm)	Coupling constants $\mathbf{J}(H z)$
3.65	$J_{1}=4.4 \mathrm{~Hz}$ $J_{2}=9.2 \mathrm{~Hz}$
2.71	$J_{1}=5.6 \mathrm{~Hz}$ $J_{2}=17.9 \mathrm{~Hz}$ $(+$ some small ones?)
2.14	$J_{1}=1.5 \mathrm{~Hz}$ $J_{2}=2.4 \mathrm{~Hz}$ $J_{3}=7.6 \mathrm{~Hz}$ $J_{4}=17.9 \mathrm{~Hz}$

Important to keep in mind: In a complex multiplet, the distance between peaks 1 and 2 is J_{1}, and between peaks 1 and 3 is J_{2}. If the distance between peaks 1 and 4 is not $J_{1}+J_{2}$, then it is J_{3}. However, if the distance between peaks 1 and 4 is $J_{1}+J_{2}$, then J_{3} is the distance between peaks 1 and 5 . Both cases occurred here. At $\delta=$ 3.93 ppm , the distance between peaks 1 and 4 is not $J_{1}+J_{2}$, so it is J_{3}. By contrast, at $\delta=6.38 \mathrm{ppm}, \mathrm{J}_{3}$ is the distance between peaks 1 and 5 .

There are lots of coupling constants with different magnitudes. A couple stand out. The largest one, 17.9 Hz , must be the geminal ${ }^{2} J$ between $\mathrm{H}_{6 a x}$ and $\mathrm{H}_{6 \text { eq }}$-there are no other possible partners. Those two protons have one other coupling partner in common at $\delta=3.93 \mathrm{ppm}$ with medium-sized ($J=5.6$ and 7.6 Hz) coupling constants. I'm going to guess that those are vicinal ${ }^{3} \mathrm{~J}^{\prime} \mathrm{s}$, and that $\delta\left(\mathrm{H}_{5}\right)=3.93 \mathrm{ppm}$. For that proton we only have one J left $(9.2 \mathrm{~Hz})$, which is probably a ${ }^{3} \mathrm{~J}$ to H_{4} at $\delta=$ 3.65. That leaves us with H_{3} having the only unassigned $\delta=4.34 \mathrm{ppm}$.

This means we can almost complete the chart:

δ (ppm)	Name of proton $\left(\mathrm{H}_{\mathrm{n}}\right)$	Coupling constants J (Hz)	Assign coupling constants $J\left(\mathrm{H}_{\mathrm{m}}, \mathrm{H}_{\mathrm{n}}\right)$
6.38	H_{2}	$\begin{aligned} & J_{1}=1.5 \mathrm{~Hz} \\ & J_{2}=2.4 \mathrm{~Hz} \\ & J_{3}=4.4 \mathrm{~Hz} \end{aligned}$	$J\left(\mathrm{H}_{2}, \mathrm{H}_{3}\right)$
4.34	H_{3}	$\begin{aligned} & J_{1}=4.4 \mathrm{~Hz} \\ & J_{2}=4.4 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & J\left(\mathrm{H}_{2}, \mathrm{H}_{3}\right) \\ & J\left(\mathrm{H}_{3}, \mathrm{H}_{4}\right) \end{aligned}$
3.93	H_{5}	$\begin{aligned} & J_{1}=5.6 \mathrm{~Hz} \\ & J_{2}=7.6 \mathrm{~Hz} \\ & J_{3}=9.2 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} J\left(\mathrm{H}_{5}, \mathrm{H}_{6 ? ?}\right) \\ J\left(\mathrm{H}_{5}, \mathrm{H}_{6 ? ?}\right) \\ J\left(\mathrm{H}_{4}, \mathrm{H}_{5}\right) \end{gathered}$
3.65	H_{4}	$\begin{aligned} & J_{1}=4.4 \mathrm{~Hz} \\ & J_{2}=9.2 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & J\left(\mathrm{H}_{3}, \mathrm{H}_{4}\right) \\ & J\left(\mathrm{H}_{4}, \mathrm{H}_{5}\right) \end{aligned}$
2.71	$\mathrm{H}_{6 \text { ?? }}$	$\begin{gathered} J_{1}=5.6 \mathrm{~Hz} \\ J_{2}=17.9 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} J\left(\mathrm{H}_{5}, \mathrm{H}_{6 ? ?}\right) \\ J\left(\mathrm{H}_{6 ? ?}, \mathrm{H}_{6 ? ?}\right) \end{gathered}$
2.14	$\mathrm{H}_{6 \text { ?? }}$	$\begin{aligned} & J_{1}=1.5 \mathrm{~Hz} \\ & J_{2}=2.4 \mathrm{~Hz} \\ & J_{3}=7.6 \mathrm{~Hz} \\ & J_{4}=17.9 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} J\left(\mathrm{H}_{5}, \mathrm{H}_{6 ? ?}\right) \\ J\left(\mathrm{H}_{6 ? ?}, \mathrm{H}_{6 ? ?}\right) \end{gathered}$

The only things that still aren't clear are (1) which H_{6} is equatorial and which is axial, and (2) what the tiny coupling constants correspond to. The H_{6} question is the easier of the two. The coupling constant $J\left(\mathrm{H}_{5} / \mathrm{H}_{6 a x}\right)$, with $\phi=180^{\circ}$, should be larger than $J\left(\mathrm{H}_{5} / \mathrm{H}_{6 \mathrm{eq}}\right)$, with $\phi=30^{\circ}$. Also, the Pretsch book states that equatorial H's are downfield of axial ones. This means that $\delta\left(\mathrm{H}_{6 \mathrm{ax}}\right)=2.14 \mathrm{ppm}$, and $\delta\left(\mathrm{H}_{6 \mathrm{eq}}\right)=2.71 \mathrm{ppm}$.

The small coupling constants are a little trickier. Two of them must be long-range allylic coupling between H_{2} and the two H_{6} protons. But there must be a third longrange coupling too; $\mathrm{H}_{6 a x}$ has two unexplained J's, and only one of them can be that allylic coupling. Pretsch says that the largest allylic coupling occurs when the allylic H is parallel with the pi-orbital system, and that is true for $\mathrm{H}_{6 \mathrm{ax}}$; this would suggest that $J\left(\mathrm{H}_{2}, \mathrm{H}_{6 \mathrm{ax}}\right)=2.4 \mathrm{~Hz}$, and that $J\left(\mathrm{H}_{2}, \mathrm{H}_{6 \mathrm{eq}}\right)=1.5 \mathrm{~Hz}$. (In principle you can't see the 1.5 Hz coupling in $\mathrm{H}_{6 \mathrm{eq}}$ because the peak's too blobby.) So what is the fourth coupling constant for $\mathrm{H}_{6 a x}$? I think it's a ${ }^{5} \mathrm{~J}$ with H_{3}, the other broad multiplet that might hide a small J. So,

δ (ppm)	Name of proton $\left(\mathrm{H}_{\mathrm{n}}\right)$	Coupling constants J (Hz)	Assign coupling constants $J\left(\mathrm{H}_{\mathrm{m}}, \mathrm{H}_{\mathrm{n}}\right)$
6.38	H_{2}	$J_{1}=1.5 \mathrm{~Hz}$ $J_{2}=2.4 \mathrm{~Hz}$ $J_{3}=4.4 \mathrm{~Hz}$	$J\left(\mathrm{H}_{2}, \mathrm{H}_{6 \mathrm{eq}}\right)$ $J\left(\mathrm{H}_{2}, \mathrm{H}_{6 \mathrm{ax}}\right)$ $J\left(\mathrm{H}_{2}, \mathrm{H}_{3}\right)$
4.34	H_{3}	$J_{1}=4.4 \mathrm{~Hz}$ $J_{2}=4.4 \mathrm{~Hz}$	$J\left(\mathrm{H}_{2}, \mathrm{H}_{3}\right)$ $J\left(\mathrm{H}_{3}, \mathrm{H}_{4}\right)$
3.93	H_{5}	$J_{1}=5.6 \mathrm{~Hz}$ $J_{2}=7.6 \mathrm{~Hz}$ $J_{3}=9.2 \mathrm{~Hz}$	$J\left(\mathrm{H}_{5}, \mathrm{H}_{6 \mathrm{eq}}\right)$ $J\left(\mathrm{H}_{5}, \mathrm{H}_{6 \mathrm{ax}}\right)$ $J\left(\mathrm{H}_{4}, \mathrm{H}_{5}\right)$
3.65	H_{4}	$J_{1}=4.4 \mathrm{~Hz}$ $J_{2}=9.2 \mathrm{~Hz}$	$J\left(\mathrm{H}_{3}, \mathrm{H}_{4}\right)$ $J\left(\mathrm{H}_{4}, \mathrm{H}_{5}\right)$
2.71	$\mathrm{H}_{6 \mathrm{eq}}$	$J_{1}=5.6 \mathrm{~Hz}$ $J_{2}=17.9 \mathrm{~Hz}$	$J\left(\mathrm{H}_{5}, \mathrm{H}_{6 \mathrm{eq}}\right)$ $J\left(\mathrm{H}_{6 \mathrm{eq}}, \mathrm{H}_{6 \mathrm{ax}}\right)$
2.14	$\mathrm{H}_{6 \mathrm{ax}}$	$\mathrm{J}_{1}=1.5 \mathrm{~Hz}$ $J_{2}=2.4 \mathrm{~Hz}$ $J_{3}=7.6 \mathrm{~Hz}$ $J_{4}=17.9 \mathrm{~Hz}$	$J\left(\mathrm{H}_{3}, \mathrm{H}_{6 \mathrm{ax}}\right)$ $J\left(\mathrm{H}_{2}, \mathrm{H}_{6 \mathrm{ax}}\right)$ $J\left(\mathrm{H}_{5}, \mathrm{H}_{6 \mathrm{ax}}\right)$ $J\left(\mathrm{H}_{6 \mathrm{eq}}, \mathrm{H}_{6 \mathrm{axx}}\right)$

Rubric:

3 points each proton name.
3 points partial (out of 6) for $\left[H_{6 a x}+H_{6 e q}\right]$ for switching them or being indeterminate.
5 points partial (out of 9) for $\left[H_{3}+H_{4}+H_{5}\right]$ for switching them or being indeterminate.
1 point each coupling constant, to within 0.3 Hz .
1 point each coupling assignment.
Full credit for assignments that are incorrect, but are consistent with your answers in first column. (I.e., we won't penalize you twice for incorrect $1^{\text {st }}$ column answer.)
Each assignment must be paired with a J value in column 3--you can't just list them.
2. $J\left(\mathrm{H}_{4}, \mathrm{H}_{5}\right)=9.2 \mathrm{~Hz}$ is an awful lot larger than $J\left(\mathrm{H}_{3}, \mathrm{H}_{4}\right)=4.4 \mathrm{~Hz}$, and that indicates that the geometric relationships between these two pairs of protons are different. We know that the dihedral angle $\phi\left(\mathrm{H}_{4}, \mathrm{H}_{5}\right)=180^{\circ}$, and so we can guess that the dihedral $\phi\left(\mathrm{H}_{3}, \mathrm{H}_{4}\right)$ must be less. This is true only if H_{3} is equatorial.

Rubric:

$$
J\left(\mathrm{H}_{4}, \mathrm{H}_{5}\right)=9.2 \mathrm{~Hz}
$$

6 points for filling boxes correctly. No partial.
3 points for labeling a coupling relationship and its J value. Any one will do.
3. In $\mathrm{D}_{2} \mathrm{O}$, all exchangeable protons-including amine, alcohol and carboxylic acid protons-are exchanged for deuterium atoms, which are silent to ${ }^{1} \mathrm{H}$ NMR.

Rubric:

6 points for correct answer. No partial.
No partial credit for answers that discuss relaxation times, H-bonding or exchange timescales.
4. In NaOD , shikimic acid should be deprotonated to its conjugate anion base:

In the anion, H_{2} is right next to a negative charge, which should increase the local electron density near the H and shield that atom from the static magnetic field $\mathbf{B}_{\mathbf{0}}$. This will push the resonance upfield.

Rubric:

4 points for correct answer. No partial.
5.

δ (ppm)	Name of carbon
178.1	COOH
138.7	C_{1}
133.2	C_{2}
74.8	$\mathrm{C}_{3 / 4 / 5}$

δ (ppm)	Name of carbon
69.5	$\mathrm{C}_{3 / 4 / 5}$
69.0	$\mathrm{C}_{3 / 4 / 5}$
35.4	C_{6}

The three peaks in the alcohol region are tough to assign specifically. In principle, C_{3} could be very different from C_{4} and C_{5}, but Pretsch has different thing sto say about those differences. The axial - OH should shift C_{3} upfield relative to equatorial -OH , but being adjacent to an alkene shifts it downfield. So I'm not sure we can conclusively assign the $\delta=74.8$ peak to C_{3} (though it seems likely).

Rubric:

3 points each carbon name.
3 points partial (out of 6) for [$\left.C_{1}+C_{2}\right]$ for switching them or being indeterminate.
Full credit for being determinate for $C_{3 / 4 / 5}$.
6. a. These two carbons have no attached protons, so they relax more slowly. Magnetization transfer is a key mechanism of T_{1} relaxation, and this occurs most rapidly from carbon to proton. No nearby protons means incomplete relaxation, which results in the 90° pulse not generating as much \mathbf{M}_{xy} intensity as it could. Any answer with "slower relaxation" was accepted here.
b. These two carbons have no attached protons, so they receive less NOE enhancement during broadband ${ }^{1} \mathrm{H}$ decoupling. Any answer that referred to NOE enhancement was accepted here.

Rubric: 5 points each answer. No partial.

