Exam 1 Answer Key

Exam 1 Mean: 67 Exam 1 Median: 67 Exam 1 St. Dev.: 17

1. Shikimic acid has some characteristic types of protons that should appear at distinct chemical shift values. From this info, we can conclusively assign one proton— H_2 , at $\delta = 6.38$ ppm—but we'll need to look closer to assign anything else. It probably helped at this point to go through the multiplets and calculate coupling constants for each:

	alkene proton— δ ≈ 4.5-6.5 ppm
O alkyl, α to double bond— δ ≈ 2.0-2.5 ppm H	
	α to -OH group— δ ≈ 3-4 ppm

δ (ppm)	Coupling constants <i>J</i> (Hz)
6.38	J ₁ = 1.5 Hz J ₂ = 2.4 Hz J ₃ = 4.4 Hz
4.34	$J_1 = J_2 = 4.4$ Hz (+ some small ones?)
3.93	$J_1 = 5.6 \text{ Hz}$ $J_2 = 7.6 \text{ Hz}$ $J_3 = 9.2 \text{ Hz}$

δ (ppm)	Coupling constants <i>J</i> (Hz)
3.65	J ₁ = 4.4 Hz J ₂ = 9.2 Hz
2.71	$J_1 = 5.6 \text{ Hz}$ $J_2 = 17.9 \text{ Hz}$ (+ some small ones?)
2.14	J ₁ = 1.5 Hz J ₂ = 2.4 Hz J ₃ = 7.6 Hz J ₄ = 17.9 Hz

Important to keep in mind: In a complex multiplet, the distance between peaks 1 and 2 is J_1 , and between peaks 1 and 3 is J_2 . If the distance between peaks 1 and 4 is not $J_1 + J_2$, then it is J_3 . However, if the distance between peaks 1 and 4 is $J_1 + J_2$, then J_3 is the distance between peaks 1 and 5. Both cases occurred here. At $\delta = 3.93$ ppm, the distance between peaks 1 and 4 is not $J_1 + J_2$, so it is J_3 . By contrast, at $\delta = 6.38$ ppm, J_3 is the distance between peaks 1 and 5.

There are lots of coupling constants with different magnitudes. A couple stand out. The largest one, 17.9 Hz, must be the geminal ²*J* between H_{6ax} and H_{6eq}—there are no other possible partners. Those two protons have one other coupling partner in common at δ = 3.93 ppm with medium-sized (*J* = 5.6 and 7.6 Hz) coupling constants. I'm going to guess that those are vicinal ³*J*'s, and that δ (H₅) = 3.93 ppm. For that proton we only have one *J* left (9.2 Hz), which is probably a ³*J* to H₄ at δ = 3.65. That leaves us with H₃ having the only unassigned δ = 4.34 ppm.

δ (ppm)	Name of proton (H _n)	Coupling constants <i>J</i> (Hz)	Assign coupling constants J(H _m ,H _n)
6.38	H ₂	$J_1 = 1.5 \text{ Hz}$ $J_2 = 2.4 \text{ Hz}$ $J_3 = 4.4 \text{ Hz}$	<i>J</i> (H ₂ ,H ₃)
4.34	H ₃	$J_1 = 4.4 \text{ Hz}$ $J_2 = 4.4 \text{ Hz}$	J(H ₂ ,H ₃) J(H ₃ ,H ₄)
3.93	H_5	J ₁ = 5.6 Hz J ₂ = 7.6 Hz J ₃ = 9.2 Hz	J(H ₅ ,H _{6??}) J(H ₅ ,H _{6??}) J(H ₄ ,H ₅)
3.65	H ₄	$J_1 = 4.4 \text{ Hz}$ $J_2 = 9.2 \text{ Hz}$	J(H ₃ ,H ₄) J(H ₄ ,H ₅)
2.71	H _{6??}	J ₁ = 5.6 Hz J ₂ = 17.9 Hz	J(H ₅ ,H _{6??}) J(H _{6??} ,H _{6??})
2.14	H _{6??}	$J_1 = 1.5 \text{ Hz}$ $J_2 = 2.4 \text{ Hz}$ $J_3 = 7.6 \text{ Hz}$ $J_4 = 17.9 \text{ Hz}$	J(H ₅ ,H _{6??}) J(H _{6??} ,H _{6??})

This means we can almost complete the chart:

The only things that still aren't clear are (1) which H₆ is equatorial and which is axial, and (2) what the tiny coupling constants correspond to. The H₆ question is the easier of the two. The coupling constant $J(H_5/H_{6ax})$, with $\phi = 180^\circ$, should be larger than $J(H_5/H_{6eq})$, with $\phi = 30^\circ$. Also, the Pretsch book states that equatorial H's are downfield of axial ones. This means that $\delta(H_{6ax}) = 2.14$ ppm, and $\delta(H_{6eq}) = 2.71$ ppm.

The small coupling constants are a little trickier. Two of them must be long-range allylic coupling between H₂ and the two H₆ protons. But there must be a third long-range coupling too; H_{6ax} has two unexplained J's, and only one of them can be that allylic coupling. Pretsch says that the largest allylic coupling occurs when the allylic H is parallel with the pi-orbital system, and that is true for H_{6ax}; this would suggest that $J(H_2,H_{6ax}) = 2.4$ Hz, and that $J(H_2,H_{6eq}) = 1.5$ Hz. (In principle you can't see the 1.5 Hz coupling in H_{6eq} because the peak's too blobby.) So what is the fourth coupling constant for H_{6ax}? I think it's a ⁵J with H₃, the other broad multiplet that might hide a small J. So,

δ (ppm)	Name of proton (H _n)	Coupling constants <i>J</i> (Hz)	Assign coupling constants J(H _m ,H _n)
6.38	H ₂	$J_1 = 1.5 \text{ Hz}$ $J_2 = 2.4 \text{ Hz}$ $J_3 = 4.4 \text{ Hz}$	$J(H_2, H_{6eq}) \ J(H_2, H_{6ax}) \ J(H_2, H_3)$
4.34	H ₃	$J_1 = 4.4 \text{ Hz}$ $J_2 = 4.4 \text{ Hz}$	J(H ₂ ,H ₃) J(H ₃ ,H ₄)
3.93	H ₅	J ₁ = 5.6 Hz J ₂ = 7.6 Hz J ₃ = 9.2 Hz	J(H ₅ ,H _{6eq}) J(H ₅ ,H _{6ax}) J(H ₄ ,H ₅)
3.65	H ₄	$J_1 = 4.4 \text{ Hz}$ $J_2 = 9.2 \text{ Hz}$	J(H ₃ ,H ₄) J(H ₄ ,H ₅)
2.71	H_{6eq}	J ₁ = 5.6 Hz J ₂ = 17.9 Hz	J(H ₅ ,H _{6eq}) J(H _{6eq} ,H _{6ax})
2.14	H _{6ax}	$J_1 = 1.5 \text{ Hz}$ $J_2 = 2.4 \text{ Hz}$ $J_3 = 7.6 \text{ Hz}$ $J_4 = 17.9 \text{ Hz}$	$J(H_3, H_{6ax})$ $J(H_2, H_{6ax})$ $J(H_5, H_{6ax})$ $J(H_{6eq}, H_{6ax})$

Rubric:

- 3 points each proton name.
 - 3 points partial (out of 6) for $[H_{6ax} + H_{6eq}]$ for switching them or being indeterminate.
 - 5 points partial (out of 9) for $[H_3 + H_4 + H_5]$ for switching them or being indeterminate.
- 1 point each coupling constant, to within 0.3 Hz.
- 1 point each coupling assignment.
 - Full credit for assignments that are incorrect, but are consistent with your answers in first column. (I.e., we won't penalize you twice for incorrect 1st column answer.)

Each assignment must be paired with a J value in column 3--you can't just list them.

2. $J(H_4,H_5) = 9.2$ Hz is an awful lot larger than $J(H_3,H_4) = 4.4$ Hz, and that indicates that the geometric relationships between these two pairs of protons are different. We know that the dihedral angle $\phi(H_4,H_5) = 180^\circ$, and so we can guess that the dihedral $\phi(H_3,H_4)$ must be less. This is true only if H₃ is equatorial.

<u>Rubric:</u>

6 points for filling boxes correctly. No partial.

3 points for labeling a coupling relationship and its *J* value. Any one will do.

3. In D₂O, all exchangeable protons—including amine, alcohol and carboxylic acid protons—are exchanged for deuterium atoms, which are silent to ¹H NMR.

Rubric:

6 points for correct answer. No partial. No partial credit for answers that discuss relaxation times, H-bonding or exchange timescales.

4. In NaOD, shikimic acid should be deprotonated to its conjugate anion base:

In the anion, H_2 is right next to a negative charge, which should increase the local electron density near the H and shield that atom from the static magnetic field **B**₀. This will push the resonance **upfield**.

<u>Rubric:</u>

4 points for correct answer. No partial.

5.

δ (ppm)	Name of carbon
178.1	СООН
138.7	C ₁
133.2	C ₂
74.8	C _{3/4/5}

δ (ppm)	Name of carbon
69.5	C _{3/4/5}
69.0	C _{3/4/5}
35.4	C ₆

The three peaks in the alcohol region are tough to assign specifically. In principle, C_3 could be very different from C_4 and C_5 , but Pretsch has different thing sto say about those differences. The axial -OH should shift C_3 upfield relative to equatorial -OH, but being adjacent to an alkene shifts it downfield. So I'm not sure we can conclusively assign the δ = 74.8 peak to C_3 (though it seems likely).

<u>Rubric:</u>

3 points each carbon name.

3 points partial (out of 6) for $[C_1 + C_2]$ for switching them or being indeterminate. Full credit for being determinate for $C_{3/4/5}$.

- 6. a. These two carbons have no attached protons, so they relax more slowly. Magnetization transfer is a key mechanism of T_1 relaxation, and this occurs most rapidly from carbon to proton. No nearby protons means incomplete relaxation, which results in the 90° pulse not generating as much M_{xy} intensity as it could. *Any answer with "slower relaxation" was accepted here.*
 - b. These two carbons have no attached protons, so they receive less NOE enhancement during broadband ¹H decoupling. *Any answer that referred to NOE enhancement was accepted here.*

Rubric: 5 points each answer. No partial.