Midterm Exam 2 Answer Key

Exam 2 Mean: 69
Exam 2 Median: 71
Exam 2 St. Dev.: 18

EXAM 2 SOLUTIONS

1. a 。

2 PTS. EACH.
b. - PEAK AT $3345 \mathrm{~cm}^{-1}$ DISAPPEARS.

THIS is BECAUSE N-H is NO CONGER PRESENT IN 3.

- PEAR APPEARS AT $1760 \mathrm{~cm}^{-1}$.

THIS IS BECAUSE 3 HAS A NEW
ALIPHATIC ESTER CARBONYL IN IT.
1 POINT FOR " $3345 \mathrm{~cm}^{-1}$ DISAPPEARS".
1 POINT FOR " $1860 \mathrm{~cm}^{-1}$ APPEARS".
2 points for each explanation ($\times 2$).
(6 points total.)
C. MOST COMMONLY, IONS IN ELECTROSPRAY MS ARE PRODUCED BY PROTONATION OF M TO $[M+H]^{+}$.

SO, yOu WOULD EXPECT THE "PARENT" PEAK TO BE ONE MASS UNIT HIGHER. (THIS WOULD NOT BE TRUE IF

6 POINTS FOR ANYTHING WITH "M+H" or "protonated."

2 POINTS FOR ATTRIBUTING TO ELECTROSPRAY. 5 POINTS

IR DATA: TRANSFORMING $3 \rightarrow 4$ REALLY
DOESN'T PRODUCE ANY NEW, INDICATIVE PEAKS - NO NEW ABSORBANCES IN THE $1690 \mathrm{~cm}^{-1}$ AREA THAT MIGHT BE ATTRIBUTABLE TO THE ARYL KETONE in Sa, AND NOTHING AROUND $1650 \mathrm{~cm}^{-1}$ THAT MIGHT GO WITH THE $-\mathrm{CH}=\mathrm{CH}_{2}$ OF SC . BUT THIS IS negative not positive evidence, so not terribly conclusive.

5 POINTS FOR ANY DISCUSSION OF ir data.

EXACT MASSES\& (FOR MPH):

$$
\begin{array}{lll}
5 a: & 21 \times{ }^{12} \mathrm{C} & 21(12) \\
15 \times{ }^{1} \mathrm{H} & 15(1.00783) \\
3 \times{ }^{16} \mathrm{O} & \frac{3(15.9949)}{315.10215} \\
5 b: & 20 \times{ }^{12} \mathrm{C} & 20(12) \\
& 15 \times{ }^{114} & 15(1.00783) \\
2 \times{ }^{14} \mathrm{~N} & 2(14.0031) \\
2 \times{ }^{16} \mathrm{O} & \frac{2(15.9949)}{315.11345}
\end{array}
$$

$$
\begin{array}{lll}
5 c= & 22(12) \\
19 \times{ }^{12} \mathrm{C} & 22 & 18(1.00783) \\
2 \times{ }^{16} 0 & 2(15.9949) \\
& & 315.13857
\end{array}
$$

HR-MS is CLEARLY THE MOST CONCLUSIVE EVIDENCE HERE, POINTING TO Sb. OTHER POSSIBILITIES ARE $>O . O 1$ AMU AWAY.

5 POINTS FOR CALCULATIONS, DISCUSSION OF Sb EXACT MASS.

ISOTOPE RATIO:

FOR ALL THREE POSSIBILITIES, CARBON WILL CONTRIBUTE THEE MOST TO THE ISOTOPIC PEAKS ISINCE THE ABUNDANCE OF $A+1$ FOR $N, O \& H$ ARE SO LOW). ACCORDING TO THE TABLE AT THE BACK OF THE EXAM, $\%(A+1,5 a) \approx 23 \%$, $\%_{0}(A+1,5 b) \approx 22 \%$, AND $\sigma_{0}(A+1,5 c) \approx 24 \%$. ON THE FACE OF IT, ONE MIGHT IMAGINE THIS FITS Sa OR Sb BEST. BUT PEAK INTEGRALS IN MASS SPEC AREN'T SO RELIABLE, AND THE RELATIVE INTENSITIES IN THE CHART ARE ~ $\pm 10 \%$, (WE SPOKE ABOUT THIS IN CLASS.) SO, REALLY, THE ISOTOPE RATIOS TELL YOU NOTHING.

3 POINTS FOR ANY DISCUSSION OF ISOTOPE RATIO.
2 POINTS FOR DISCOUNTING (BASED ON (NACCURACY)
2. a)
cols)
b. The key to assianina all the peaks IN STRYCHNINE WAS CHOOSING GOOD" STARTING POINTS" IN THE CHAINS OF COUPLED PROTONS. THE EASIEST PLACE TO START WAS PROBABLY H_{22} - THE ONLY ALKENE PROTON, AND WELL SEPARATED FROM ALL OTHERS. IT SHOWS A CROSSPEAK WITH THE PAIR OF DOUBLET OF DOUBLETS AT ~ 4.1 PPm, ('SEE NEXT PAGE.) THOUGH WE DON'T KNOW WHICH IS WHICH OF $23 a / 23 b, W E C A N$ PUT THESE in the chart (SHOWN VATER on s).

THE CLOSE-UP COSY IS PRETTY MESSY- LOTS OF COUPLED PARTNERS! THE GOAL HERE IS TO START WITH THINGS THAT AREN'T COUPLED TO MUCH. IN THE GREY SET, THERE IS ONE VERY SIMPLE PAIRING$\delta=3.70$. AND 2.70. THIS MUST BE H $H_{20 a}-H_{2 O b}$ (SINCE THE 7 Ta/ITb/18a/18b SET WOULD BE MUCH MORE COMPLICATED.). THE OTHER GRAY CROSSPEAKS AR 17118 -LET'S IGNORE TUEM, THEYRE NOT IN OUR CHART.

IN THE NASTY COUPLED SET, ONE PROTON IS NOT SO NASTY - Hg IS ONLY COUPLED TO ONE OTHER PROTON, HI, THERE IS ONLY ONE PEAK IN THE COSY THAT HAS ONLY ONE PARTNER: $\delta=3.85\left(\mathrm{H}_{8}\right)$, COUPLED $\omega / \delta=1.27\left(H_{13}\right)$.

${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H} \operatorname{COSY}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H} \operatorname{COSY}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$

ANOTHER SIMPLE PROTON TO ASSIGN IS $1 H_{16}-$ THIS ONE IS ONLY COUPLED TO TWO PROTONS, $H_{15 a} \& H_{15 b}$. THERE IS ONLY ONE COSY $P E 4 K$ $\omega /$ TwO CROSSPEAKS, $\delta=3.92\left(H_{16}\right)$, COVPLED w/ $\delta=2.35 \& 1.45\left(\mathrm{H}_{15 \mathrm{a} / \mathrm{b}}\right)$. $15 a$ AND 15 ARE COUPLED TO EACH OTHER, H16, AND ONLY ONE OTHER PROTON, $H_{14}=(\delta=3.11)$. H_{14} is ONE OF A NUMBER OF PROTONS IN A BIG OVERLAPPING MULTIPLET. TO SOME EXTENT, THIS CLOSES THE Loop w/ H_{13}.
H_{13} is ALSO cOUPLED TO $H_{12}(\delta=4.3)$, AND H_{12} LEADS TO THE Two H_{11} protons $(\delta=3.15,2.65)$.

proton	$\delta(\mathrm{ppm})$	
H_{8}	3.88	
$\mathrm{H}_{11}(\mathrm{x} 2)$	3.15	2.65
H_{12}	4.30	2 POINTS
H_{13}	1.28	EACH.
H_{14}	3.15	
$\mathrm{H}_{15}(\times 2)$	2.36	1.46
H_{16}	3.94	
$\mathrm{H}_{20}(\mathrm{x} 2)$	3.71	2.73
$\mathrm{H}_{23}(\mathrm{x} 2)$	4.15	4.08

LOOKING AT THE HMQC COULD HAVE HELPED YOU ANSWER PART B - BUT YOU DIDN'T STRICTLY NEED IT.
c) AT THIS POINT, PRETTY EASY. LJEE NEXT PAGE.)

2 POINTS FOR EACH PAIR; I POINT FOR CIRCLES, I POINT FOR ARROW.
d) NATURALLY, THERE ARE LOTS OF CROSSPEAKS IN THE NOESY SPECTRUM. BUT THE ONLY ONES THAT HELP ASSIGN THE UNASSIGNED PAIRS ARE (1草) CROSSPEAKS THAT INVOLVE ONE OF H_{11}, H_{15}, H_{20} OR $H_{23} ;$ AND (2) CROSSPEAKS THAT ARE UNIQUE TO ONE OF AN a / b PAIR. (SO, FOR EXAMPLE, $15 a \longleftrightarrow 16$ DOESN'T HELP, BECAUSE THERE IS ALSO A $15 b \leftrightarrow(6$ PEAK.) I'VE FOUND FIVE OF THESE (PAGE AFTER NEXT). YOU NEEDED ONLY 3 OF THESE.

2 POINTS FOR CIRCLING EACH

$$
\text { CROSSPEAK }(\times 3) \text {; }
$$

2 POINTS FOR EACH ARROW .(x)).

e.

proton \#	$\delta(\mathrm{ppm})$ for H_{a}	$\delta(\mathrm{ppm})$ for H_{b}
H_{11}	3.15	2.65
H_{15}	1.46	2.36
H_{20}	2.73	3.71
H_{23}	4.08	4.15

ONLY NEED 3 OF THESE. IF YOU PUT ALL 4, YOU MUST GET ALL 4 RIGHT (i.e., EVEN if 3 ARE RIGHT, 1 WRONG $=1$ WRONG).

2 POINTS EACH ($\times 6$).

