Midterm Exam 3
 Answer Key

Exam 2 Mean: 72
Exam 2 Median: 78
Exam 2 St. Dev.: 16

EXAM 3 SOLUTIONS

1. KEY PIECES OF information here:

- the ${ }^{3} \mathrm{C}$ nmr spectrum shows 8 peaks in the ARYL REGION, SO WE KNOW OUR UNKNOWN HAS AT LEAST 8 ARYL CARBONS, COULD BE MORE THOUGH EQUIVALENT CARBONS WOULD GIVE JUST ONE CARBON PEAK.
- 'h NMR IS CONSISTENT w/ ABOVE- LOTS OF ARYL PROTONS.
- ${ }^{13}$ C NMR ALSO SHOWS A CARBONYL PEAK @ $\delta=195.4 \mathrm{ppm}$.
- THE EI-MS SHOWS A NUMBER OF M/M+2 PEAK PAIRS WITH I:1 PEAK INTENSITY- 155-157,183-185, AND 260-262. THESE STRONGLY SUGGEST THE PRESENCE OF BROMINE IN ALL OF THESE IONS; ABUNDANCE

$$
\left({ }^{79} \mathrm{Br}:{ }^{81} \mathrm{Br}\right)=1: 1
$$

OBSERVED LOSSES FOLLOW A DEFINITE PATTERN:
ave written " $-78 / 80^{\prime \prime}$ in parentheses
because these aren't possible losses; bromine WEICHS 79/81. BUT $-157 / 159$ IS POSSIBLE: $(79 \mid 81+78)$. IF 78 IS ANOTHER ARYL GROUP, THEN COULD BE

THIS MAKES EXCELLENT SENSE:

$$
\begin{array}{r}
V-c 0 \\
+0 \\
77
\end{array}
$$

SO, WHERE IS THE BROMINE? ONLY ONE OF THREE ROSSIBILITIES (ortho, meta, para) GIVES 8 ARYL ${ }^{3} \mathrm{C}$ PEAKS:

$10{ }^{13} \mathrm{C}$ PEAKS
EXPECTED.

$10{ }^{13} \mathrm{C}$ PEAKS
EXPECTED

$8{ }^{13} \mathrm{C}$ PEAKS
EXPECTED

So, Answer is p-bromobenzophenone,

4 POINTS (I POINT FOR ALDEHYDE.)
-Br 2 POINTS FOR BROMINE.
Q) 2 POINTS (WI BROMINE ANYWHERE)

2 POINTS FOR BROMINE IN THE RIGHT PLACE, ON ARYL RING (para).

2 POINTS EACH FOR ANY STRUCTURE THAT ($\times 3$)

Gives plausible $m / z=77,105$,
AND $183 / 185$ FRAGMENTS.
(

20 POINTS TOTAL.
2. a) 11-HETE IS BEING ANALYZED BY NEGATIVE ION ESI-MS. SO, $m / z=319$ IS MOST LIKELY DEPROTONATED $\left([M-H]^{-}\right)$VERSION OF $m / z=320$.

LESS LIKELY, BUT STILL PRESENT:
$319 \longrightarrow 301$ is LoSS of $18\left(-\mathrm{H}_{2} \mathrm{O}\right):$

$O R$

$319 \rightarrow 275$ is cos of $44\left(-\mathrm{CO}_{2}\right)$:

$319 \rightarrow 301 \rightarrow 257$ is coss of $18+44\left(-\mathrm{H}_{2} \mathrm{O},-\mathrm{CO}\right)$

4 POINTS

Ji.e., H^{+}transfer

b)

SCORING:
6 POINTS FOR DAUGFER ION STRUCTURE.

2 POINTS FOR ANY DAUGHTER THAT ClEAVES iN RIGHT PLACE (i.e.,
 2 POINTS FOR ANY $m / z=167$ ION.
2 POINTS FOR NEUTRAL FRAGMENT. MUST be correct.

6 POINTS FOR MECHANISM

2 POINTS FOR ANY 6-MEMBERED CYCLIC MECHANISM (CANNOT BE RADICAL, BUT OTHERWISE ANYTHING GOES J.
3. a. all three spectra contain series of peaks
that correspond to multiply charged IONS SPECTRUM (i) CONTAINS ONLY ONE ION SERIES, THAT OF THE HIV-P MONOMER
\square
can solve awl a set of simultaneous equations, USING $m / 2=2157$ \& 1798 PEAKS AS AN EXAMPLE:

$$
\begin{array}{rl}
\frac{(m+z)}{z}=2157 & \frac{(m+z+1)}{z+1}=1798 \\
m+z=2157 z & m+z+1=1798(z+1) \\
m=2156 z & m=1797 z+1797 \\
2156 z & =1797 z+1797 \\
z=5 & (\text { for } 2157 \text { peak }) \\
m=10780
\end{array}
$$

SO, IN SPECTRUM (i),

SPECTRUM (ii) HAS SAME ζ PEAKS AS SPECTRUM
(ii), plus some new ones. since the solution is still dilute, we might imagine that these PEAKS CORRESPOND TO

SImultaneous equations

ON $m / z=1912$ AND $2295:$

$$
\begin{array}{rl}
\frac{(m+z)}{z}=2295 & \frac{(m+z+1)}{z+1}=1912 \\
m+z=2295 z & (m+z+1)=1912(z+1) \\
m=2294 z & m=1911 z+1911 \\
2294 z & =1911 z+1911 \\
z & \\
m & \\
m & (\text { for } 2295 \text { peak })
\end{array}
$$

So, in spectrum (ii),

(PEPSTATIN A WEIGHS 690 DALTONS.)
in spectrum (iii), only 5 peaks are unaccounted for:
iii 100-

PRESUMABLY, THESE CORRESPOND TO
$\underset{\text { (empty) }}{\text { (filled) }}$ AND

AS IN SPECTRUM (ii), THE PEAKS ARE PARTNERED

$$
1960 \rightarrow 2023, \quad ? \rightarrow 2225, \quad 2396 \rightarrow 2472
$$

BUT $m / z=2225$ APPEARS TO BE MISSING ITS PARTNER. IT ISN'T: 2157 IS ITS PARTNER, WHICH MAKES SENSE:

$$
m / 2\left(\left[5 \cdot 5 H^{+}\right)=m / 2\left(\square \cdot 5 \cdot 10 H^{+}\right)\right.
$$

T twice the mass, twice the charge.

WE CAN MAKE ABSOLUTELY SURE OF THIS BY DOING SImULTANEOUS EQUATIONS:

FOR THE $1960-2157$ PAIR,

$$
\begin{array}{rl}
\frac{m+z}{z}=2157 & \frac{m+z+1}{z+1}=1960 \\
m+2=21572 & m+z+1=19602+1960 \\
m=21562 & m=1959 z+1959 \\
2156 z & =1959 z+1959 \\
z & =10 \\
m & =21560
\end{array}
$$

FOR THE $2023-2225$ PAIR,

$$
\begin{array}{cc}
\frac{m+2}{2}=2225 & \frac{m+z+1}{z+1}=2023 \\
m+z=2225 z & m+z+1=2023(z+1) \\
m=2224 z & m=2022 z+2022 \\
2224 z & =2022 z+2022 \\
m & =10 \text { (for } 2225 \text { peak) } \\
m=2220
\end{array}
$$

$m / 2$
$2023\left(\frac{1}{\frac{1}{1}} \cdot 11 H\right)^{1+}$

2225

2472

SCORING:

| 11 POINTS 11 POINTS 3 BONUS" POINTS |
| :--- | :--- | :--- |

b) IF THE INHIBITOR WERE NONCOVALENTLY BOUND IT SHOULD BE POSSIBLE TO DISPLACE IT IN A TANDEM MS/MS, COLLISION-INDUCED DISSOCIATION (CID) EXPERIMENT:

If COMPLEX IS NON COVALENT, THIS SITOULD BE VERY EASILY OBSERVED. IF COMPLEX IS COVALENT IT SHOULD BE VERY DIFFICULT OR IMPOSSIBLE; HARD CID WOULD DO IT, BUT ALSO BREAK OTHER BONDS IN THE PROTEAN AS WELL.

ALSO POSSIBLE: CHEW UP PROTEIN ENZYMATICALLY, AND SEE WHETHER ANY FRAGMENTS ARE HEAVIER THAN THEY SHOJLD BE iN MS. THIS IS ACTUALLY THE ANJWER TO PART (C), BUT IT wOULD wORK HERE TOO. SCORING: 15 POINTS FOR SOMETHING THAT WOULD WORK. 10 POINTS FOR SOMETHING THAT WOULD WORK physically, but has fatal flaw. 5 POINTS FOR ANY MASS SPEC EXPERIMENT.!
C) THE BEST WAY TO DO THIS IS PROBABLY AN AN ANALYSIS OF FRAGMENTS OF HI PROTEASE. ENZYMATIC CLEAVAGE OF HIV PROTEASE BREAKS IT UP INTO PEPTIDE PIECES. THESE PIECES CAN THEN BE ANALYZED BY MS-MS:

sequence (Ind MS) peptide

THE ONE PEPTIDE FRAGMENT THAT CHANGES MASS IS THE ONE THAT BINDS THE INHIBITOR, THIS FRAGMENT CAN BE ANALYZED BY CID:

$\stackrel{\text { Cly }}{\longleftrightarrow}$ Lystinkibitor Ley
NORMAL

Wherever cid cleavage pattern differs

FROM PROTEIN WITHOUT INHIBITOR ATTACHED,

THAT IS WHERE INHIBITOR IS BOUND.

