Midterm Exam 3 Answer Key

Exam 3 Mean: 41
Exam 3 Median: 39
Exam 3 St. Dev.: 16

EXAM 3 SOLUTIONS

1. a) THE PARENT MOLECULE, $\frac{1}{2}$ HAS MONOISOTOPIC MASS 288^{m} (FOR $C_{12} \mathrm{H}_{7}\left[{ }^{35} \mathrm{Cl}\right]_{3} \mathrm{O}_{2}$). $m / z=218$ CORRESPONDS TO LOSS OF 70. THERE ISN'T ANY EASY WAY TO LOSE 70 AMU WITH CARBONS, OXYGEWS \& HYDROGEWS, BUT IT WOULD BE EASY TO LOSE 2 (Cl.) $=70$.

SO,

$$
m / 2=218:\left[\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{ClO}_{2}\right]^{+}
$$

$m / z=146$ CORRESPONDS TO LOSS OF 122.
STRUCTURALLY, CLEAVAGE HAPPENS

WITH H. MOVING SOMEHOW FROM RIGHT TO LEFT TO GIVE

$$
\left.m\right|_{2}=146:\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}\right]^{+}
$$

'. 3 POINTS FOR EACH FORMULA. GIVING STRUCTURE
INSTEAD OF FORMULA IS FINE, AND STRUCTURE NEED ONLY CORRESPOND TO CORRECT FORMULA FOR FULL CREDIT. don't need positive charge.
b) FOR BOTH FORMULAE ($M+2$) AND ($M+4)$ INTENSITIES ARE DETERMINED BY FREQUENCY OF ${ }^{37} \mathrm{Cl}, \quad(M+1)$ IS DETERMINED BY ${ }^{13} \mathrm{C}$, AND $(M+3)$ IS DETERMINED BY [3 7Cl ${ }^{13} C$] TOGETHER. CONTRIBUTIONS OF ${ }^{2} H,{ }^{17} 0$ \& ${ }^{18} 0$ ARE NEGLIGIBLE $(<1 \%)$ BY COMPARISON.

$$
\begin{aligned}
& m / 2=218: \quad 12 \times\left(1.1 \%{ }^{13} \mathrm{C}\right)=13.2 \% \\
&(M+2)=1 \times\left(32 \%{ }^{37} \mathrm{Ce}\right)=32 \% \\
&(M+3)=32 \% \times 13.2 \%=4.2 \%
\end{aligned}
$$

probability of probability of ${ }^{37} C$ ${ }^{13} \mathrm{C}$
$(M+4)=0 \%$. THERE IS ONLY ONE CHCORINE in THE MOLECULE.

$$
\begin{aligned}
m / z=146: \quad & =6 \times\left(1.1 \%{ }^{13} C\right)=6.6 \% \\
(M+2) & =2 \times\left(32 \%{ }^{37} C l\right)=64 \% \\
(m+3) & =64 \% \times 6.6 \%=4.2 \% \\
(M+4) & =32 \% \times 32 \%=10 \%
\end{aligned}
$$

IN BOTH CASES, THE $M+2$ \& $M+4$ INTENSITIES ARE CONSISTENT WITH DOUG'S SPECTRUM, BUT $M+1$ \& $M+3$ INTENSITIES ARE TOO HIGH. DINT kNow why.

1 POINT FOR EACH PERCENT (TO WITHIN 5\%); ', POINT FOR EITHER "YES" OR "NO" IN CONSISTENCY (NO GOOD ANSWER HERE)
C) PARENT MASS IN EI-MH OF 2 is $\mathrm{m} / \mathrm{z}=252$. ISOTOPE RATIOS ARE CONSISTENT WI 2 CHLORINES SO GNE CHLORINE IS GONE FROAL 1. ACTUALLY, LOSS OF HCE FROM MASS 288 EXPLAINS $m / z=252$ PARENT. SO WHERE DOES HCR COME FRom in $\frac{1}{2}$?

NMR SHOWS THAT PRODUCT 2 IS MUCH LESS COMPLEX THAN PRODUCT $\frac{1}{n}$ (THOUGH IT APPEARS AS THOUGH LOW $\triangle V / J$ IS CAUSING dOME COMPLEXITY IN SPLITTING. PRODUCT MOLECULE MIGHT BE SYMMETRIC. ONE WAY OF GETTING THERE WOULD $B E$

\downarrow

T Points.
$; 2$ POINTS FOR ANY
1 STRUCTURE IN WHICH く
\therefore Hel HAS BEEN LOST.
d)

SHOWS A UV ABSORBANCE AT 2280 nm DUE TO $\pi \rightarrow \pi^{*}$ TRANSITIONS IN ARYL RINGS.

IN THIS MOLECULE, CONJUGATION IS NOT CONTINUOUS BECAUSE STERICALLY, TWO ARYL RINGS CANT LIE IN THE SANE PLANE:

steric repulsion twists rings out of planarity

SO, IN $\frac{1}{m}$, CONJUGATION IS NOT MAXIMIZED. IN 2 , HOWEVER, MOLECULE IS COMPLETELY PLANAR \& CONJUGATED:

THIS SHIFTS UV-VIS $A B$ SORPTION TO LONGER WAVELENGTH.
, IO POINTS FOR "INCREASE IN CONJUGATION DUE TO 1 PLANARITY:' NO NEED TO EXPLAIN $\pi \rightarrow \pi^{*}$ TRANSITION.

6 POINTS FOR ANY INCREASE IN CONJUGATION ARGUMENT.

10 POINTS ALSO AVAILABLE FOR FUNCTIONAL CROUP RELATED ARGUMENTS, BUT ONLY IF CONSISTENT NI YOUR STRUCTURE IN PART (C) AND IF THEY ARE TRUE (BACKED BY CHARTS). THIS IS RESTRICTIVE.
e) MOST IMPORTANT QUESTION HERE: HOW 00 WE DISTINGUISH ENDOGENOUS TRICLOSAN FROM OUR TRLCLOSAN? IN CLASS, WE TALKED ABOUT RUNNING PARALLEL EXPERIMENTS W/ BACTERIA IN WHICH ONE SAMPLE WAS ISOTOPICALLY MODIFIED; HERE, SIMILAR STRATEGY WOULD BE EFFECTIVE, USING ISOTOPICALLY LABELED TRICLOSAN AS OUR TRICLOSAN:
e.g.,

DEUTERATED TRICLOSAN,

$$
M W=294
$$

(monoisotopic)
THIS WOULD SHOW SAME SERIES OF PEAKS \& PRODUCTS AS NORMAL TRICLOSAN, ONLY 6 MASS UNITS HIGHER.

SO, EXPERIMENT WOES SOMETHING LIE

- ADD TRICLOSAN-d UPSTREAM ON A SUNNY DAY;
- COLLECT WATER DOWNSTREAM:
- INJECT THIS INTO GC-MS, MAYBE AFTER

EXTRACTING WI CHLOROFORM;

- LOOK AT EI-MS OF PEAKS FROM TOTAL ION CHROMATOGRAM FOR SAME COMPOUNDS $\frac{1}{n}$ \& 2 , ONLY 6 MASS UNITS HEAVIER.

5 POINTS FOR SUBSTRATE THAT IS DISTINGUISIHADLE 1 From EnDOGENOUS TRICHOSAN,

- full credit for any isotopic substitution that MAKES PARENT MORE THAN 4 MASS UNITS HEAVIER. IF NOT, $(M+4)$ PEAK INTERFERES
- 3 POINTS FOR ANY OTHER ISOTOPE SUBSTITUTION (ALL 37 Ce ; ${ }^{\text {ASS. }} 18$; MONODEUTERATED)
- 2 POINTS Tor other chemical variant of triclosan' (DICHVORINATES STARTiNG MATERIAL) - CHEMIITRY WONT BE THE SAME, BUT WILL GIVE INFO.

5 POINTS FOR ANY DESCRIPTION OF MASS SPEC EXPERIMENT. COULD BE ANYTHING-GC-MS, ESI-MS, JUST ABOUT ANYTHING MUST BE - reasonable.

2 a) THE CHART ON PAGE 14 LISTS MASSES FOR EACH AMINO ACID FRAGMENT

HOWEVER, THE PEPTIDE IN FULL LOOKS LIKE

SO THE MASS OF THE PEPTIDE WILL BE THE SUM OF THE FRAGMENT MASSES, PLUS 1 amu FOR THE N-TERMINAL-H, PLUS 17 amU FOR THE C-TERMINAL OH, IN ADDITION, THE MASSES OBSERVED ARE FOR $[M+H]^{+}$IN MALDI-MS. IN ACID MATRIX, SO, ANOTHER 1 amu is ADDED.

$$
\begin{aligned}
& m \mid Z \text { (NON-PHOSPHORYLATED PEPTIDE) }= \\
& Y+F+R+P+S+G+F+Y^{*}+D \\
& +17+1+1=1196.5
\end{aligned}
$$

IF ONE -OH IS CONVERTED TO

$$
m / 2 \text { (PHOSPHORYLATED) }=m / 2 \text { (NON-PHOSPHORYLATED) }
$$

$$
+80
$$

$$
=1.276 .5
$$

OKAY, SO THE PROBLEM PROBABLY WOULDNT EXIST IF THE PEPTIDE WEREN'T PHOSPHORYLATED, SO THE APPEARANCE OF $m / z=1276.4$ IN SPECTRUM (i) IS NO SURPRISE. BUT IMPORTANTLY, $m / 2=1178.4$ IS NOT NON-PHOSPHORYLATED PEPTIDEIT MUST BE A FRAGMENT.
$:{ }^{4}$ POINTS FOR EACH MASS.
', 2 POINTS FOR "YES".
b) FOLLOW,NG THE SHOKAT PROTOCOL RESULTED IN NEW CHEMICAL SPECIES - WHICH SUGGESTS THAT IT IS SERINE THAT IS PIFOSPHORYLATED. LBECAUSE THAT IS WHAT THE METHOD IS DESIGNED TO DETECT, SO, THE PHOSPHORYLATED PEPTIDE MUST $B E$

$$
m / 2=1276.4: \quad\left[Y F R P(p S) G F\left(Y^{*}\right) D+H\right]^{+}, O R
$$

THE SHOKAT PROCEDURE CONVERTS THE (pS) RESIDUE INTO K*:

OR YFRP: $\left.K^{*}\right) G F\left(Y^{*}\right) D ; \quad m / z=1255.4$.

PROTEASE THEN CLEAVES THIS TO THE RIGHT of k^{*} :

$m 1 z=728.3$.

THAT'S 3 OUT OF 4. THE LAST $m / z=1178.4$, IS ALREADY PRESENT FROM THE PURE PHOSPHORYLATED PEPTIDE. IT IS ALSO AN INTERMEDIATE GENERATED BY THE KOH.

OR $\quad Y F R P(d h A) G F\left(Y^{*}\right) D ; m / z=1178.4$.

In sum, $m / 2=1276.4 \quad Y F R P(p S) G F\left(Y^{*}\right) D$
$1255.4 \quad Y F R P\left(K^{*}\right) G F\left(Y^{*}\right) D$
$1178.4 \quad Y F R P(\operatorname{dh} A) G F\left(Y^{*}\right) D$
728.3 YFRP(K*)
is POINTS EACH BOX. THOUGH THE QUESTION MAKS SOME
\vdots RECOMMENDATIONS ON FORMAT, ANY FORMAT IS FINE.
c) THREE EXPLANATIOWS:
\# 1: KOH-MEDIATED ELIMINATION (SEE ABOVE). HAPPENS DURING SHOKAT METHOD (SAMPLE PREP).

\#2: MATRIX-MEDIATED ELIMINATION. SAME MECHANISM AS ABOVE, BUT HAPPENS DURING IRRADIATION/ VAPORIZATION.

$$
\begin{aligned}
& +\mathrm{H}_{3} \mathrm{PO}_{4}
\end{aligned}
$$

\#3: UNIMOLECULAR FRAGMENTATION. HAPPENS DURING VAPORIZATION.

$$
+\mathrm{H}_{3} \mathrm{PO}_{4}
$$

6 POINTS FOR MECHANISM O
2 POINTS FOR WHERE.
d) ONLY ONE FUNCTIONAL GROUP IN PEPTIDE ABSORBS $>300 \mathrm{~mm}:$ NITRO GROUP IN Y*,

4 POINTS FOR ANY OF THESE ANSWERS

$$
\left(N 1 T R O_{1} y^{*},-N O_{2}\right)
$$

e) ALL OF THE OBSERVED PEAKS CORRESPOND TO LOSSES OF 16 AND 32 FROM PEAKS iN (ii). IRRADIATED GROUP IS $-\mathrm{NO}_{2}$, SO MY BET IS THAT OXYGEN ATOMS COME OFF LVIV MULTIJTEP PROCESS) FROM TITS.

$($ parent -16$)$
(paren t-32)

CAN BE ANYTHING THAT HAS LOST MASS 32.

$$
\text { ' } 2 \text { POINTS FOR }{ }^{\text {EACH })} 16^{\prime \prime} \text { AND }{ }^{\prime \prime} 32^{\prime \prime} \ldots
$$

