Final Exam<br>Answer Key

Exam 2 Mean: 61
Exam 2 Median: 67
Exam 2 St. Dev.: 19


Final EXAm KEy
a) THE IR SPECTRUM LACKS MANY OF THE SPECTRAL FEATURES YOU mIGHT EXPECT FOR 2 :

- olefinic c-h stretch. 2 has two olefinic PROTONS THAT SHOULD GIVE $V>3000 \mathrm{~cm}^{-1}$. BUT THERE ARE NO PEAKS $>3000 \mathrm{~cm}^{-1} 5$ POINTS
- olefinic $c=c$ stretch. $\alpha$ j $\beta$-UnSaturated KETONES GIVE A PEAK AT $V \sim 1600-1650 \mathrm{~cm}^{-1}$ FOR THE OLEFIN STRETCH, BUT THERE'S NOTHING THERE EITHER. 5 POINTS
- COO-H STRETCH. ALL O-H'S GIVE BLOBBY PEAKS iN THE $\nu=3000-3400 \mathrm{~cm}^{-1}$ RANGE. BUT THIS ONE DOESN'T, 5 POINTS
(LESS important:)
- $C=0$ STRETCH, $\alpha, B$-UNSAT, KETONE, SHOULD $B E \quad \nu<1700 \mathrm{~cm}^{-1}$, BUT ALL $C=0$ STRETCHES

ARE $1760>V>1720$. BUT TOUGH TO TELL. 2 POINTS IF NEEDED.
" SO, we LEARN: OLEFIN is GONE. THERE IS NO CARBOXYLIC ACID.
b) THE MASS SPECTRUM HAS SOME VERY DISTINCTIUE PEAK PATTERNS. FIRST, EACH PEAK APPEARS TO BE ACCOMPANIED BY AN MT PARTNER, WITH ABOUT $65 \%$ OF INTENSITY OF M.

CAN'T BE BROMINE (wOULD BE I:I INTENSITY), CANT BE JUST 1 CHLORINE, BUT COULD BE 2 CHLORINES. THEN, $M$ WOULD $B E{ }^{35} \mathrm{Ce}{ }^{35} \mathrm{Cl}$, AND $M+2$ wouLD BE ${ }^{35} \mathrm{Cl}^{37} \mathrm{Cl}$ (AND $M+4$ wouLD $B E$ ${ }^{37} \mathrm{Cl}^{37}(\mathrm{C})$. THESE WOULD HAVE $\sim 1: 0.64: 0.10$ RATIO.

SECOND, MS SHOWS TWO SETS OF PEAKS SEPARATED BY $m / 2=17$. THIS IS CHARACTERISTIC OF CI-MS USING NH $\mathrm{NH}_{3}$ AS A REAGENT GAS; ALL IONS ARE $[M+H]^{+}$AND $\left[M+\mathrm{NH}_{4}\right]^{+}$VARIANTS. SO,

$$
\begin{array}{rll}
m / 2= & 437: & {\left[M\left({ }^{35} \mathrm{C} e^{35} \mathrm{Ce}\right)+H\right]^{+}} \\
439: & {\left[M\left({ }^{35} \mathrm{C} e^{37} \mathrm{Ce}\right)+H\right]^{+}} \\
454: & & {\left[M\left({ }^{35} \mathrm{C} e^{35} \mathrm{Cl}\right)+\mathrm{NH}_{4}\right]^{+}} \\
456 & : &
\end{array} \begin{array}{ll} 
& {\left[M\left({ }^{35} \mathrm{Ce}^{37} \mathrm{Cl}\right)+N H_{4}\right]^{+}}
\end{array}
$$

(BASE MASS OF M WOULD BE 436 FOR ${ }^{35} \mathrm{Ce}^{35} \mathrm{Ce}$.)
scoring:
5 POINTS FOR ANY HALOGENIC ISOTOPE PATTERN.
5 POINTS FOR RECOGNIZING $\mathrm{NH}_{3}$ APPEARS IN higher masses.

3 POINTS FOR RECOGNIZING TWO CHLORINES IN ANSWERS.
2 POINTS FOR CORRECT SERIES.
c) OKAY, STRUCTURE HAS GAINED TWO CHLORINE ATOMS, SO, IF WE STARTED $\omega$ MASS OF 2 ( $M \omega=368$ ) AND JUST ADDED TWO CHLORINE ATOMS, WED BE AT MW =438. AWFULLY CLOSE TO WHERE WE WANT TO BE (436), FROM MOLECULAR FORMULA OF 2, COULD ALSO LOSE 2 H'S, OR MAYBE TRADE AN O FOR A $C \& A N D G A I N ~ 2 * H ' S:$

$$
\begin{aligned}
& 2: C_{18}^{H_{28} \mathrm{SiO}_{6}} \longrightarrow \longrightarrow \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{SiO}_{6} \mathrm{Cl}_{2} \\
&(m \omega=368) \mathrm{Cl}_{(m \omega=436)} \\
& \mathrm{C}_{19} \mathrm{H}_{38} \mathrm{SiO}_{5} \mathrm{Cl}_{2} \\
&(m \omega=436)
\end{aligned}
$$

FOR $\left[M\left({ }^{35} \mathrm{Ce}^{35} \mathrm{Ce}\right)+H\right]^{+}$PEAK, exact mass $=437.0983$.

$$
\begin{aligned}
& {\left[\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{SiO}_{6} \mathrm{Cl}_{2}+\mathrm{H}\right]: \quad 18(12.0000)} \\
& 27(1.00783) \\
& 1(27.9769) \\
& 6(15.9949) \\
& 2(34.9689) \\
& =437.0955 \\
& { }^{12} \mathrm{C} \\
& \text { 'H } \\
& { }^{32} \mathrm{~S} \text { : } \\
& { }^{16} 0 \\
& { }^{35} \mathrm{Ce}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{SiO}_{5} \mathrm{Cl}_{2}+\mathrm{H}\right]:} \\
& 19(12.0000) \\
& { }^{12} C \\
& 31(1.00783) \quad 1 \mathrm{H} \\
& 1(27.9769) \quad 32 \mathrm{si} \\
& 5(15.9949) \quad{ }^{16} 0 \\
& 2(34.9689) \quad{ }^{35} \mathrm{Cl} \\
& =437.1319 \text { (whoa, way off) }
\end{aligned}
$$

MY GUESS IS, MOLECULAR FORMULA IS

$$
\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{SiO} \mathrm{O}_{6} \mathrm{Cl}_{2} .
$$

SCORING: 5 POINTS FOR ANY CALCULATION USING CORRECT ISOTOPE MASSES.

5 POINTS FOR CORRECT MOLECULAR FORMULA. 3 POINTS FOR CORRECT ION FORMULA INSTEAD. 5 POINTS FOR ANY MW $=436$ MOLECULE.
d) $A N D e$ )
clearly the core of the exam. First, it was IMPORTANT TO DO SOME OBVIOUS ASSIGNMENTS:



ALL OF THESE WERE BIG singlets.

THEN, THERE ARE 8 MORE PROTONS IN THE 'H nmr that we have to assiGn. i felt. THAT HMQC WAS AN IMPORTANT TOOL TO FIGURE THIS OUT. HMQC SHOWS THAT SIX OF THESE EIGHT PROTONS ARE ON DIFFERENT CARBONS, AND THAT 2 OF THEM ARE ON THE SAME CARBON\% (SEE NEXT PALE): $\delta=2.16$ AND $\delta=2.57$ CARBON \# 2 is AN EXCELLENT CANDIDATE FOR THIS CARBON - IT ALREADY HAS 2 ATTACHED PROTONS TO START WITH. WEILL CALL THESE PROTONS $H_{2}$ a AND $\mathrm{H}_{2}$.

${ }^{1} \mathrm{H}{ }^{13}{ }^{3} \mathrm{CHMQC} \mathrm{NMR}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$
$H_{2 a} \& H_{2 b}$ COULD $B E$ COUPLED TO $H_{1} \& H_{3}$
IN OUR STRUCTURE FOR 3 - AND, SURE ENOUGH, THE COSY SHOWS TWO PROTONS COUPLED TO $H_{2 a}$ \& $H_{2 b}$. BUT WE DON'T KNOW WHICH is H, \& WHICH is ho. THESE, in TURN, MIGHT bE COUPLED TO $\mathrm{H}_{9}$ AND $\mathrm{H}_{4}$, RESPECTively. but aGain, we DON'T KNOW WHICH IS WHICH, LET'S MAP THIS

OUT:


THIS LOOKS VERY MUCH LIKE OUR STARTING MATERIAL:


AT THIS POINT, WE DON'T EVEN KNOW what the molecule IS AND WE'VE ALREADY ASSIGNED MOST OF THE SPECTRUM!

NOW COMES THE HARD PART: ASSIGNING THE PROTONS COUPLED TO $H_{4}$. KEY HERE WAS THE HINT ON PAGE 3, WHICH SAYS THAT ONE COUPLING OF THE TWO UNKQLOWN PROTONS IS A * $J_{H H}$ AND THE OTHER IS A ${ }^{3} J_{\text {HA }}$. THIS IS SATISFIED FOR


AND THAT'S IT. THERE'S NO MORE PROTONS To ASSIGN.

| carbon\# | ${ }^{1} \mathrm{H} \delta(\mathrm{ppm})$ |
| :---: | :---: |
| 1 | 2.95 |
| 2 | $2.16,2.57$ |
| 3 | 3.32 |
| 4 | 2.76 |
| 5 | 4.05 |
| 6 | -3.90 |
| 7 |  |
| 9 |  |


${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \cos \mathrm{Y} \mathrm{NMR}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

OKAY, NOW FOR THE REALLY HARD PART -
ASSIGNING THE STRUCTURE. WE KNOW

- NO olefin.
- NO ACID.
- 2 CHLORINES HAVE BEEN ADDED.
- molecule has skeleton:


TWO OF "?"ARE
PROBABLY CHLORINES.
IF SO, MOLECULAR FORMULA WOULD BE $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{SiO}_{6} \mathrm{Cl}_{2}-\omega \mathrm{HiCH}$ IS WHAT WE WANT! OTHER TWO "?"'s MUST BE CONNECTED.



SCORING ON (d):

5 POINTS FOR ANY STRUCTURE THAT SHOWS


2 POINTS FOR EIGHTH "H" SOMEWHERE THAT CAN COUPLE WITH OTHER THINGS.

3 POINTS FOR RIGHT ANSWER (OR PLAUSIBLY CLOSE, DETERMINED BY PROF. TALON).

SCORING ON (e):
3 POINTS EACH FOR $H_{1}, \mathrm{H}_{2 a}, \mathrm{H}_{2 b}, \mathrm{H}_{3}, \mathrm{H}_{9}$ \& $H_{4}$. THESE MUST BE CORRECTLY ASSIGNED. (18 POINTS TOTAL)

3 POINTS ${ }^{(E A C H)}$ FOR $H_{5}$ \& $H_{6}$ RESONANCES, ACCORDING TO ANSWER iN (d).

2 POINTS FOR COUPLING MAKING SENSE, 1 POINT FOR CHEMICAL SHIFT MAILING SENSE. 1 AUTOMATIC BONUS POINT! ( 25 TOTAL POINTS)
$f)$


TWO WORDS:W-COUPLING. (OKAY, ONE WORD AND A LETTER.)

ANSWER IS NOT KARPLUS EQUATION THIS APPLIES ONLY TO ${ }^{3} J_{H H}$.

5 POINTS FOR SHOWING ANY $W$-COUPLING ON STRUCTURE, 5 POINTS FOR "W-COUPLING".

$\mathrm{H}_{1} \rightarrow \mathrm{H}_{2 a}, \mathrm{H}_{4}, \mathrm{H}_{9}$

2 POINTS FOR is \& and CORRECT ARROW EACH, 1 POINT FOR BCd.

ASSIGNMENTS AND NOE DISTANCES MUST MAKE SENSE.

