# Final Exam 

Answer Key

Final Mean: 75
Final Median: 82
Final St. Dev.: 17


FINAL EXAM SOLUTIONS

1. a) IN ADDITION TO $\mathrm{H}^{+}$, INJECTION MIXTURE ALSO CONTAINS $\mathrm{Na}^{+}$, SO, ONE MIGHT EXPECT THAT, in $A D D I T I O N$ To $[M+H]^{+},[M+N a]^{+}$woULD ALSO $B E$ FORMED. $m / 2(M+N a)^{+}=309.2$. $\mathrm{m} / \mathrm{z}=595.4$ IS A BIT UNUSUAL. CLEARLY, ITS SOMETHING CLOSE TO TWICE THE PARENT MASS. BUT IT STILL MUST BE MADE OF 2 OR 3 . ANSWER IS NONCOVALENT DIMER W/ ONE $\mathrm{Na}^{+}$ION:


OR, IN OTHER TERMS, $[2 M+N a]^{+}, m / z=595.4$.
is POINTS EACH. 309.2: ALL OR NOTHING, ANY DRAW,NG WI $\mathrm{M}+\mathrm{Na}$ acceptable.
595.4: 5 POINTS FOR ANY NONCOVALENT $2 M+N a$ complex.
2 POINTS KOR COVALENT [ 2 M ] PRODUCT (WOULD NOT OCCUR iN ESI).
b) A BIT ODD; IN THIS COMPOUND ALKENE STRETCHES (1607,1640 $\mathrm{cm}^{-1}$ ) ARE VERY STRONG, BUT CARBONYL STRETCH (1688 $\left.\mathrm{cm}^{-1}\right)$ IS WEAK. (ORDINARILY, CARBONYL STRETCHES ARE PROMINENT.) SO,


2


3

3 POINTS FOR EITHER ONE,
' 2 MORE FOR BOTH.
( 5 POINTS TOTAL.)
ANYTHING THAT INCLUDES CARBONYL IS FINE. (e.g., 是)
C) THE MEAT OF THIS PROBLEM. ACCOUNTING -WISE, STRUCTURE HAS 26 PROTONS, AND SUM OF INTEGRALS IS ~ 27 , SO THERE IS A LITTLE BIT OF SPURIOUS SIGNAL SOMEWHERE; HOWEVER, WERE NOT ASSIGNING THE ENTIRE MOLECULE, SO THIS MAY BE OKAY, 'H SPECTRUM HAS THREE REGIONS TO IT:

4-7 pPM: ALKENE, 3 RESONANCES;
1.5-3 ppm: ALKANE, LOTS OF OVERLAPPING RESOWANCES; $1-1.5$ pain: METHYL, $4 \times 3 H$ RESONANCES.

THESE MAKE SENSE BASED ON EITHER STRUCTURE 2 OR 3 - BOTH HAVE THREE ALKENE PROTONS ( $\mathrm{H}_{7}, \mathrm{H}_{8}, \mathrm{H}_{12}$ ) AND BOTH HAVE FOUR METHYL GROUPS $\left(H_{16}, H_{17}, H_{18}, H_{19}\right)$.

ASSIGNiNG $\mathrm{H}_{17} \rightarrow \mathrm{H}_{3} \rightarrow \mathrm{H}_{4 a}, \mathrm{H}_{4 b}:$
OF THE FOUR METHYL GROUPS, ONE IS SPLIT INTO A. DOUBLET 2 (THE REST ARE SINGLETS). THIS RESONANCE MUST BE H17, WHICH IS COUPLED TO $H_{3}$. CAN ALREADY MEASURE $J\left(\mathrm{H}_{3}, \mathrm{H}_{77}\right)=7 \mathrm{H}_{2}$, wHICH SOUNOS TOTALLY REASONABLE. THE cOSY NMR SHOWS THAT THE DOUBLET $(\delta=1.02 \mathrm{ppm})$ EXHIBITS ONLY ONE CROSSPEAK; THE CLOSE-UA COSY SHOWS THAT THIS CROSSPEAK LINES UP WITH THE RIGHT HALE OF THE OVERHAPPING MULTI-MULTIPLET @ 2.0-2.2 .ppm.


IN I-D SPECTRUM (CLOSEUP) OF THIS MULTIPLES, YOU ARE GIVEN THE HINT THAT THIS RIGHT HALF IS A QUINTET OF DOUBLETS (WHERE THE DOUBLETS" J IS VERY SMALL). THIS MAKES SENSE - HI HAS 5 COUPLING PARTNERS $\left(3 \times H_{17}, H_{4 a}, H_{4 b}\right)$, AND A QUINT, OF DOUBLETS HAS 5 J'S ( 4 OF WHICH ARE IDENTICAL). FINALLY, THE QUINTET PART HAS $J=7 \mathrm{H}_{2}$, JUST LIKE $\mathrm{H}_{17}$. THIS MEANS THAT $J\left(\mathrm{H}_{3}, \mathrm{H}_{4 a}\right)=7 \mathrm{H}_{2}$, AND $J\left(\mathrm{H}_{3}, \mathrm{H}_{4 b}\right)=1 \mathrm{H}_{2}$. (NATURALLY, $H_{4 a} \& H_{43}$ couLd BE SWITCHED; I DEFINE THEM ARBITRARLCY HERE.) SO,

$$
\delta\left(\mathrm{H}_{3}\right)=2.07 \mathrm{ppm} \text { (THE }
$$ CENTER OF THE QUINTET.

IN THE COSY, $\delta=2.07 \mathrm{pPM}$ MATCHES UP WITH ONLY ONE OTHER RESONANCE - THE dd@ 2.86 pm. ONE OF THE COUPLING CONSTANTS HERE IS $6.5 \mathrm{H}_{2}$, VERY CLOSE TO 7 Hz . SO THIS MULTIPLET REPRESENTS $H_{4 a}$ (BASED ON OUR ARBITRARY OEFN' ABOVE). THE MULTIPLES ALSO HAS 4 LARGE $=20 \mathrm{H}_{2}$ (!) WHICH MUST BE $\cup\left(H_{4 a}, H_{4 b}\right)$. THERE'S ONLY ONE OTHER MULTIPLES THAT HAS THIS LARGE A J: THE DOUBLET @ 2.10 PPM, WHERE THE J READS 18.5 HZ , BUT ONE OF THE LABELS IS A BIT OFF CENTER. ACTUALLY, IF YOU LOOK CLOSE, THE DOUBLET REALLY LOOKS LIKE A dd wiTH AI H2 $\quad\left(\mathrm{H}_{3}, \mathrm{H}_{46}\right)$. So, TO CONCLUDE: $\delta\left(\mathrm{H}_{3}\right)=2.07 \quad J\left(\mathrm{H}_{3}, \mathrm{H}_{17}\right)=7 \mathrm{~Hz}$


$$
\begin{aligned}
& \delta\left(H_{4 a}\right)=2.86 \\
& \delta\left(H_{4 b}\right)=2.10 \\
& \delta\left(H_{17}\right)=1.02
\end{aligned}
$$

$$
J\left(H_{3}, H_{4 a}\right)=7 \mathrm{H}_{2}
$$

$$
J\left(\mathrm{H}_{3}, \mathrm{H}_{45}\right)=1 \mathrm{H}_{2}
$$

$$
J\left(H_{4 a}, H_{4 b}\right)=20 \mathrm{~Hz}
$$

AssiGning $H_{7}, H_{8}, H_{12}:\left(8 H_{19}\right)$
ALKENE REGION HAS ONLY THREE PROTONS, AND THE COSY shows that two are coupled to each other AND NOTHING ELSE $\left(\mathrm{H}_{7} \& \mathrm{H}_{8}\right.$, (2) $4.99 \& 6.45 \mathrm{PPM}$, $J_{H_{7}, H_{8}}=10.5 \mathrm{H}_{2} ;$ CANNOT ASSIGN watich is $\mathrm{H}_{2}$ \& WHICH IS Hg YET). REMAINING RESONANCE MUST BE HAL ( $\delta=5.15 \mathrm{ppm}$ ).

So whicat is $H_{7} \&$ witich is $H_{8}$ ? MIGHT GUESS BASED ON CHEMICAL SHIFT ALONE. SINCE RESONANCE OF OXYGEN LONE PAIRS PUTS $e^{-}$DENSITY ON $H_{8}$,



YOU MIGHT EXPECT $\delta\left(\mathrm{H}_{8}\right)$ TO BE UPFIELD OF $f\left(\mathrm{H}_{7}\right)$. BETTER EVIDENCE THAN THIS - NOE. IRRADIATION OF $\delta=4.99 \mathrm{~Hz}$ RESONANCE GIVES POSITIVE NOE TO THE OTHER ALKENE (EXPECTED) AND A METHYL GROUP, PROBABLY H,9. IRRADIATION OF THIS METHYL GROUP @ $\delta=1.47$ SHOWS NOE ONLY TO $\delta=4.99 \mathrm{pPM}$ AND NOT $\delta=6.45 \mathrm{pPM}$. BEST EXPLANATION FOR THIS IS

so, To sum UP: $\delta\left(\mathrm{H}_{7}\right)=6.45 \mathrm{ppm} \quad J\left(\mathrm{H}_{7}, \mathrm{H}_{8}\right)=10.5 \mathrm{H}_{2}$

$$
\begin{aligned}
& \delta\left(H_{8}\right)=4.99 \mathrm{ppm} \\
& \delta\left(H_{12}\right)=5.15 \mathrm{ppm} \\
& \delta\left(H_{19}\right)=1.47 \mathrm{ppm}
\end{aligned}
$$

Assigurina $H_{16} \& H_{18}$ :
THE LAST TWO METHYL GROUPS ARE BEST ASSIGNED BY NOE. $H_{16}$ IS RIGHT NEXT TO $H_{17}$, So Yov'O EXPECT NOES BETWEEN THESE TWO. SURE ENOUGH, IRRADIATION OF $\delta=1.02 \mathrm{ppm}\left(\mathrm{H}_{17}\right)$ SHOWS POSITIVE NOES TO $H_{3}$, $H_{\text {Ib, }}$ AND THE SINGLET AT $\delta=1.07 \mathrm{ppm}$. (INCIDENTALLY, THIS SHOWS THAT HHS IS ON THE SAME FACE AS HIT, THOUGH THIS ISN'T ASKED FOR.) LIKEWISE, IRRADIATION AT $\delta=1.07 \mathrm{pPM}$ SHOWS NOE AT $\delta=1.02\left(\mathrm{H}_{17}\right)$. SO $\delta\left(H_{16}\right)=1.07 \mathrm{ppm}$. SO, $\delta\left(H_{18}\right)$ MUST BE 1.38 ppm , THE ONLY $3 H$ SINGLET LEFT.
So, $\quad \delta\left(H_{16}\right)=1.07 \mathrm{ppm}$.

$$
\delta(H, 8)=1.38 \mathrm{ppm} .
$$





ANSWERS FOR $\delta\left(H_{Y a}\right)$ AND $\delta\left(H_{4 b}\right) C A N$ BE SWITCHED. IF so, $J\left(\mathrm{H}_{3}, \mathrm{H}_{4 a}\right)$ AND $J\left(\mathrm{H}_{3}, \mathrm{H}_{6} / 6\right)$ ALSO NEED TO BE SWITCHED.
d) IF VOUR ASSIGNMENT IN THE CHART WAS CORRECT, THIS WAS A GIMME; IF NOT, YOUR ANSWER TO THIS PROBABLY MADE NO SENSE \& SHOULD HAVE ENCOURAGED YOU TO RE-EVALUATE THE CHART. THE COUPLING IS BETWEEN $H_{12} \& H_{18}$, AND IN EITHER $\sum_{n}$ OR 3 IS A FOUR-BOND ( $4 J$ ) COUPLING.


6 POINTS total.
e) HMQC WAS ACTUALLY VERY HELPFUL IN ASSIGNING SOME ${ }^{13} \mathrm{C}$ RESONANCES. EACH ALKENE PROTON MAPS TO ONE OF THE ALKENE CARBONS:

$$
\begin{aligned}
& \delta\left(\mathrm{H}_{7}\right) 6.45 \mathrm{ppm} \longrightarrow 118 \mathrm{ppm}\left(\mathrm{C}_{7}\right) \\
& \delta\left(\mathrm{H}_{8}\right) 4.99 \mathrm{ppm} \longrightarrow 120 \mathrm{ppm}\left(\mathrm{C}_{8}\right) \\
& \delta\left(\mathrm{H}_{12}\right) 5.15 \mathrm{ppm} \longrightarrow 125 \mathrm{ppm}\left(\mathrm{C}_{12}\right)
\end{aligned}
$$

THESE ARE CORRECT FOR BOTH 2 AND 3. $\delta=82.9$ IS ONLY $S P^{3}$ HETEROATOM CARBON IN ${ }^{13} \mathrm{C}$ SPECTRUM, AND $C_{q}$ IS THE ONLY HETEROATOM SP CARBON iN 2 AND 3 . So $\delta\left(c_{q}\right)=82.9 \mathrm{ppm}$.

FINALLY, THE TWO MOST-DOWNFIELD CARBONS, 198.6 ppm \& 169.1 PPM .199 pPM WOULD BE CHARACTERISTIC CARBONYL SHIFT, AND 169 PPM COULD BE HETEROATOMALKENE:


IN 2 , THESE ARE $C_{1} \& C_{5}$, AND IN 3 THEY ARE $C_{5}$ AND $C_{1}$ (REVERSED). SO CHART LOOKS LIKE:

| ${ }^{13} \mathrm{C}$ chemical <br> shift ( $\delta$, ppm) | carbon \# (in 2) | carbon \# (in 3) |
| :---: | :---: | :---: |
| 198.6 | 1 | 5 |
| 169.1 | 5 | 1 |
| 125.3 | 12 | 12 |
| 119.8 | 8 | 8 |
| 118.0 | 7 | 7 |
| 82.9 | 9 | 9 |

f) THE PEAKS AT $125,120 \& 118$ PPM EACH CORRESPOND TO CARBONS WITH ATTACHED PROTONS. AS A RESULT, THESE CARBONS RELAX MORE EFFICIENTLY AFTER BI RF) EXCITATION, AND THEIR FID RELAXES TO ZERO, DUE TO NOE \& VERY EFFICIENT RELAXATION TIMES OF PROTONS, OTHER SHIFTS CORRESPOND TO CARBONS ONLY BOUND TO

CARBONS AND OXYGEN. RELAXATION IS SLOWER, EQUILIBRIUM IS NOT REACHED, AND INTENSITY IS LOWER.


INTENSITY;
13 POINTS FOR ATTACHED PROTONS ACCELERATING : RELAXATION IN THE CASE OF THLLER PEAKS. i
g) THE HMBC SHOWS SOME CHARACTERISTIC CROSSPEAKS THAT LOCATE THE CARBONYL ANS $\beta$-OXY CARBONS (IE., THAT ALLOW $C_{1}$ \& $C_{5}$ TO BE ASSIGNED):


CARBONYL CARBON IS CLOSE TO $H_{16}$, AND $\beta$-OXY CARBON is cLOSE TO $H_{4 a} \& H_{4 b}$, ONLY in 2 . so,


6 POINTS FOR' - 14
1412
2 PICKING 2 AS $\because \ddots 3$
CORRECT.
$\therefore$ POINT EACH ARRON.
' 2 POINTS EACH CONPLED PAIR in BOKES:)

$5 \longleftrightarrow 4 b$ N ANY TWO OF THESE tHREE is acceptable.

IF ASSIGNMENTS FOR $C_{1}$ \& $C_{5}$ WERE REVERSED IN PART (e), THEN YOU WOULD CONCLUDE THAT 3 WAS CORRECT STRUCTURE DUE TO SAME NOES. YOU GET FULL CREDIT FOR THIS, IF AND ONLY IF ASSIGNMENTS FOR $C_{1} \& C_{5}$ ARE SWITCHED IN (e).
h) THERE ARE A COUPLE OF UNIQUE NOE'S:

$$
H_{12} \rightarrow H_{4 a} \& H_{4 a} \rightarrow H_{12}
$$

COLO ONLY REALLY OCR FOR 2.
A DECEPTIVE ONE IS

$$
H_{18} \rightarrow H_{7} ;
$$

THIS LOOKS SELECTIVE FOR 3 AS DRAWN, BUT ONE MIGHT EASILY IMAGINE THAT RNDERSIDE MACROSYCLIC SEGMENT IN 2 IS FLIPPED, PLACING $H_{18}$ CLOSE TO $H_{17}$ :


SO $H_{18} \rightarrow H_{7}$ ISN'T REALLY INDICATIVE, BUT ITS CLOSE.

4 PoInTS FOR $H_{12} \rightarrow H_{4 a}$ or $H_{4 a} \rightarrow H_{12}$.
2 points for $\mathrm{H}_{18} \rightarrow \mathrm{H}_{7}$.

