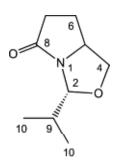
Heteronuclear Multiple-Bond Correlation (HMBC) Spectroscopy

Used to study ²*J* and ³*J* correlations between ¹³C and ¹H, multiple bonds away.

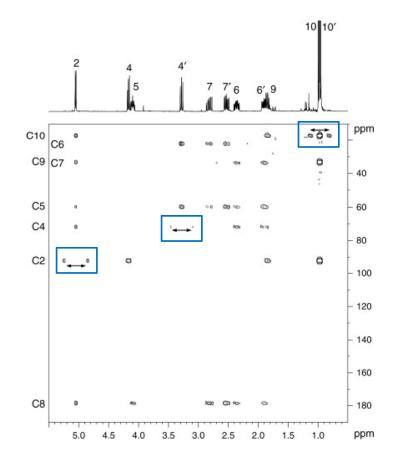
Main advantage: Can observe connectivity with/through nuclei without attached protons.

Pulse sequence incorporates long-range delay Δ_{LR} to suppress ^{1}J correlations.


$$^{1}H$$

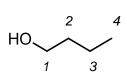
$$^{13}C$$

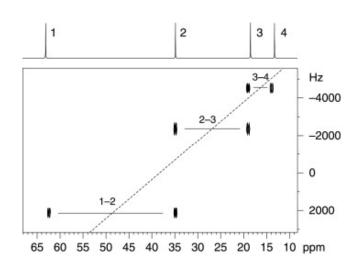
$$^{\pm x}$$


$$^{t_{1}} \longrightarrow t_{1}$$

HMBC

Each peak corresponds to a ²*J*(CH) or ³*J*(CH) correlation.


¹*J* correlations sometimes break through filter; show up as multiplet crosspeaks.


10 10' **HMBC** ppm C10 C6 ° . e 6 e C9 C7 º 40 C5 60 C4 80 C8 exhibits: C2 0 100 ²J with H7, H7' 120 ³*J* with H2, H5, 140 H6, H6' - 160 So, C8 & C2 must be C8 180 on the same side of the molecule. 3.0 2.5 ppm 4.0 3.5

¹³C-¹³C Homonuclear Correlation (INADEQUATE)

Low probability of ¹³C-¹³C pairs makes this correlation spectroscopy extremely insensitive. DQF method improves resolutions somewhat.

Horizontal pairs correspond to $^{1}J(CC)$ correlations.

