Rotational Frame Nuclear Overhauser Effect Spectroscopy (ROESY)

NOESY works well with small or large molecular weights. For intermediate (1000-5000 Da) molecular weights, alternate ROESY pulse sequence is used to obtain nearly identical data.

Example: Sam Gellman's β -peptides.

Infrared (IR) Spectroscopy

- Used to investigate specific functional groups
- · No information on total structure, connectivity
- Direct absorption spectroscopy; involves excitation of a vibrational mode with an IR photon

IR Spectroscopy: Methods

Dispersive instrument:

Uses monochromator grating to scan wavelength.

IR Sampling Formats: Pressed Salt Window (KBr Pellet)

Material can be combined with an IR-transparent solid (e.g., KBr) and pressed w/ high pressure into a clear window.

IR Sampling Formats: Salt Plate Deposition, Solution-Phase

Material can be deposited as a solution, and then dried, onto an IR-transparent window material (e.g., NaCl).

Or, measurement can be performed on solution, either in a liquid cell (w/ IR-transparent windows) or with an immersion probe.

IR Sampling Formats: Attenuated Total Reflectance (ATR)

Method for looking at surfaces, films, small sample quantities.

IR Spectroscopy: Quantum Limitations

IR-absorbing transitions are allowed only when dipole moment changes during vibrational motion.

Modes can be combinations of bond vibrations.

~ 1600-1660 cm⁻ affected by bond stereochemistry.

C=C stretch in pairs, ~ 1600 and 1475 cm⁻¹.

Characteristic Features in IR: Alcohols

O-H stretch 3650-3600 cm⁻¹ if dilute (no H-bonding).

O-H stretch 3400-3300 cm⁻¹ if H-bonded.

resonance effect lowers bond frequency

Characteristic Features in IR: Carbonyls

Characteristic Features in IR: Carbonyls

Summary of IR Absorption Bands of Carbonyl Groups (in cm⁻¹) 1800 1750 1700 1650 1600 1550 cm³ x.clolc.x 12 0-0-0 ွႌ OH IT 1900 1850 1800 1750 1700 1650 1600 1550 cm

Tables & examples in Pretsch are the most helpful.

Raman Spectroscopy

Vibrational frequencies can also be probed by change in wavelength of scattered, visible light.

Raman Spectroscopy

Technically, quantum selection rules for Raman scattering are opposite those of IR absorbance; Raman probes symmetric modes rather than asymmetric ones.

Practically speaking, many modes in complex organic molecules are probed by both methods.

Confocal Raman Microscopy

Because light source in Raman spectroscopy is a laser, beam can be focused onto a sample or surface to do Raman "microspectroscopy".

Confocal Raman Microscopy

Allows for "functional group imaging".

Freudiger, C. W.; Min, W.; Saar, B. G.; Lu, S.; Holtom, G. R.; He, C.; Tsai. J. C.; Kang, J. X.; Xie, X. S. *Science* **322**, 1857 (2008).