In-Class Exercise Solutions: Halogen Isotope Patterns

a. The isotopic abundance of Cl is $75 \%{ }^{35} \mathrm{Cl}$ and $25 \%{ }^{37} \mathrm{Cl}$. Calculating the probability of an intermediate number of ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ atoms is complicated, but calculating the probability that all atoms will be one or the other is pretty simple: it's just P^{z}, where P is the probability of one atom being a particular type, and z is the number of atoms. So, for

number of Cl atoms (z)	probability of $\left({ }^{35} \mathrm{Cl}\right)_{z}$	probability of $\left({ }^{37} \mathrm{Cl}\right)_{z}$
1	$(0.75)^{1}=0.75$	$(0.25)^{1}=0.25$
2	$(0.75)^{2}=0.56$	$(0.25)^{2}=0.06$
3	$(0.75)^{3}=0.42$	$(0.25)^{3}=0.02$
4	$(0.75)^{4}=0.32$	$(0.25)^{4}=0.00$
5	$(0.75)^{5}=0.24$	$(0.25)^{5}=0.00$
6	$(0.75)^{6}=0.18$	$(0.25)^{6}=0.00$

Note that only the $z=1$ row adds to 100%; the other rows have contributions from molecules with some ${ }^{35} \mathrm{Cl}$ and some ${ }^{37} \mathrm{Cl}$ atoms that aren't listed.

Looking at our $m / z=354$ multiplet now, we can ask: what fraction of the total intensity is the lowest-mass $(m / z=352)$ peak? There are four significant peaks in the pattern, with intensities of $\sim 3: 4: 3: 1$ maybe. That means that the lowest-mass peak isn't $1 / 3$ of the total intensity, but maybe $\sim 1 / 4$; that would point to the molecule having 5 Cl atoms. The rest of the molecule would then have mass $352-5(35)=177$. That could make the molecular formula $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{Cl}_{5}$, with an unsaturation number of 1 ; or $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{5}$, with an unsaturation number of 8 . If the molecule is aromatic (minimum $\mathrm{UN}=4$), the formula must be $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{5}$.

Clearly that is the hard way to do this kind of problem. The easier way would be to use a web-based calculator to show us the isotope pattern we should expect. For example, if I plug $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{5}$ into the calculator at http://library.med.utah.edu/masspec/mole.htm, I get the output shown at right, which is awfully close to the spectrum above.

b. I think each of the lower-mass multiplets match the $\%{ }^{35} \mathrm{Cl}$ values we calculated in the chart in part (a). The pattern at 319 has three major peaks with intensities $\sim 3: 4: 2$; that would mean the first peak is abut 33% of the total, and corresponds to a fragment with 4 Cl atoms. The pattern at 282 is a bit messy, but if we consider only the tallest peaks, the first tall peak could be 42% of the total, with 3 Cl atoms. And the "pattern" at 235 has a first peak with over half the total intensity for that group, suggesting a fragment with two Cl atoms.

