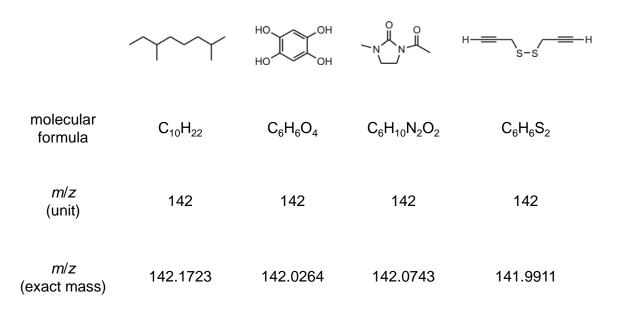
Exact Masses and Molecular Formulae

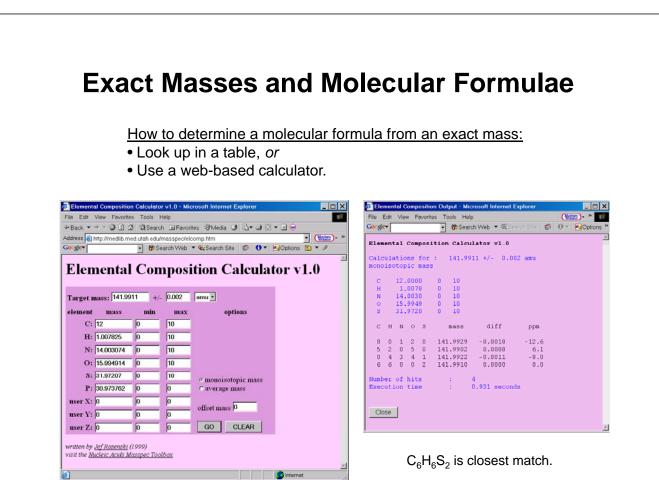

Element	Atomic Weight	Nuclide	Mass	Relative Abundance	
Hydrogen	1.00797	$^{1}\mathrm{H}$	1.00783	100.0	¹² C mass set to
		D(2H)	2.01410	0.015	12 amu,
Carbon	12.01115	^{12}C	12.00000 ^b	100.0	exactly.
		13C	13.00336	1.11	exactly.
Nitrogen	14.0067	¹⁴ N	14.0031	100.0	
		15N	15.0001	0.37	As a result,
Oxygen	15.9994	16O	15.9949	100.0	
		17O	16.9991	0.04	¹ H mass is
		18O	17.9992	0.20	actually higher
Fluorine	18.9984	19F	18.9984	100.0	than 1 amu.
Silicon	28.086	28Si	27.9769	100.0	than ranu.
		29Si	28.9765	5.06	
		30Si	29.9738	3.36	
Phosphorus	30.974	31P	30.9738	100.0	And ¹⁶ O mass is
Sulfur	32.064	32S	31.9721	100.0	lower than 16
		33S	32.9715	0.79	
		34S	33.9679	4.43	amu.

Isotopes vary from unit masses by "mass defect".

¹H has positive mass defect; ¹⁶O has negative mass defect.

Exact Masses and Molecular Formulae

So, molecules with different molecular formulae have different exact masses.


Exact Masses and Molecular Formulae

How to determine a molecular formula from an exact mass:

• Look up in a table, or

142			
$C_4H_4N_3O_3$	142.0253	$C_7H_{12}NO_2$	142.0868
$C_4H_6N_4O_2$	142.0491	$C_7H_{14}N_2O$	142.1107
C ₅ H ₄ NO ₄	142.0140	$C_7 H_{16} N_3$	142.1346
$C_5H_6N_2O_3$	142.0379	$C_8H_{14}O_2$	142.0994
$C_5H_8N_3O_2$	142.0617	C ₈ H ₁₆ NO	142.1233
$C_5H_{10}N_4O$	142.0856	$C_8H_{18}N_2$	142.1471
$C_6H_6O_4$	142.0266	$C_9H_6N_2$	142.0532
$C_6H_8NO_3$	142.0504	$C_9H_{18}O$	142.1358
$C_6H_{10}N_2O_2$	142.0743	$C_9H_{20}N$	142.1597
$C_6H_{12}N_3O$	142.0981	$C_{10}H_8N$	142.0657
$C_6H_{14}N_4$	142.1220	$C_{10}H_{22}$	142.1722
$C_7 H_{10} O_3$	142.0630	$C_{11}H_{10}$	142.0783

From R. M. Silverstein, F. X. Webster, *Spectrometric Identification of Organic Compounds* (Wiley, 1998), 6th ed.

- For nearly all elements, there are multiple isotopes with some natural abundance.
- Every atom in a molecule has a chance of being one of these isotopes. So, there will be some fraction of molecules that will be heavier than expected parent mass.

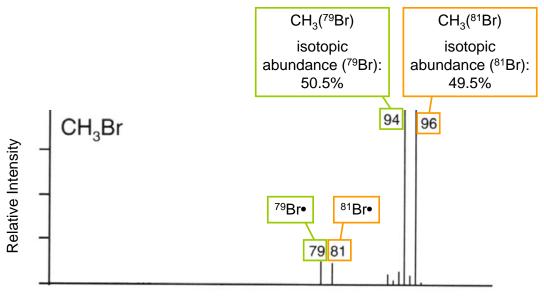
Atomic Weight	Nuclide	Mass	Relative Abundance	
1.00797	1H	1.00783	100.0	For some, isotope
	D(2H)	2.01410	0.015	abundance is low.
12.01115	^{12}C	12.00000b	100.0	
	¹³ C	13.00336	1.11	
14.0067	¹⁴ N	14.0031	100.0	
	15N	15.0001	0.37	
15.9994	16O	15.9949	100.0	
	17O	16.9991	0.04	
	¹⁸ O	17.9992	0.20	
35.453	35Cl	34.9689	100.0	
	37Cl	36.9659	31.98	
79.909	⁷⁹ Br	78.9183	100.0	For others, isotope
	⁸¹ Br	80.9163	97.3	abundance is high.
126.904	127I	126.9045	100.0	
	1.00797 12.01115 14.0067 15.9994 35.453 79.909	1.00797 ¹ H D(2H) 12.01115 ¹² C 13C 14.0067 ¹⁴ N 15.9994 ¹⁶ O 17O ¹⁸ O 35.453 ³⁵ Cl 37Cl ⁷⁹ Br 81Br ⁸¹ Br	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

These differences are exhibited in peak intensities in mass spec.

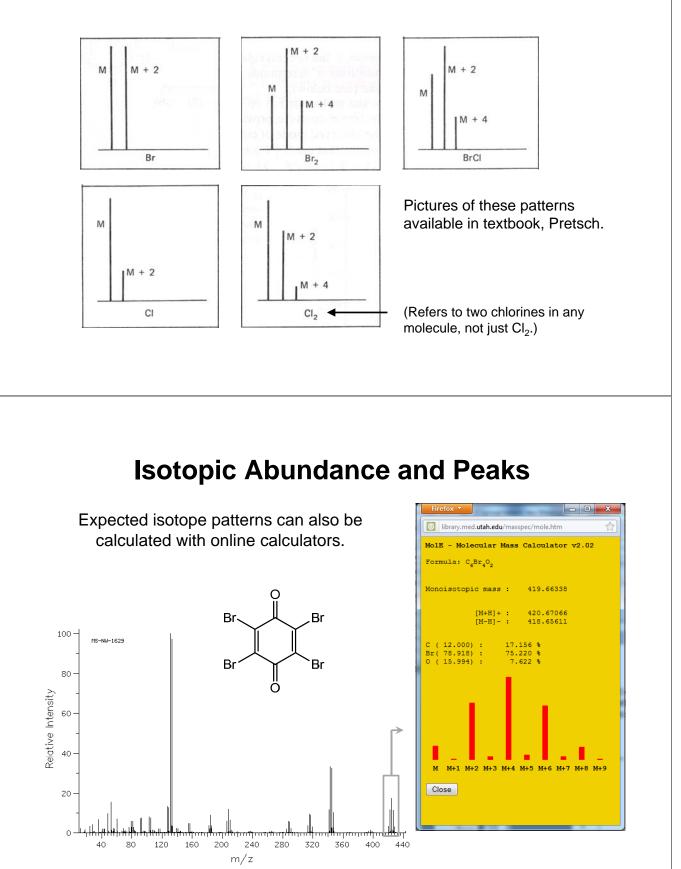
Isotopic Abundance and Peaks

- For nearly all elements, there are multiple isotopes with some natural abundance.
- Every atom in a molecule has a chance of being one of these isotopes. So, there will be some fraction of molecules that will be heavier than expected parent mass.

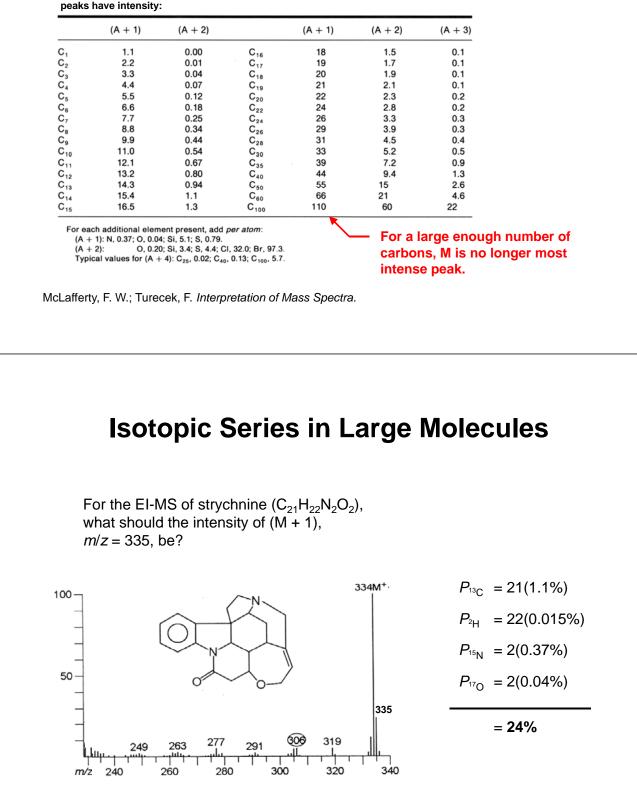
Element	Atomic Weight	Nuclide	Mass	Relative Abundance	
Hydrogen	1.00797	$^{1}\mathrm{H}$	1.00783	100.0	For some, isotope
		D(2H)	2.01410	0.015	mass difference is 1.
Carbon	12.01115	^{12}C	12.00000b	100.0	
		13C	13.00336	1.11	
Nitrogen	14.0067	14N	14.0031	100.0	
		15N	15.0001	0.37	
Oxygen	15.9994	16O	15.9949	100.0	
		17O	16.9991	0.04	
		¹⁸ O	17.9992	0.20	
Chlorine	35.453	35Cl	34.9689	100.0	
		37C1	36.9659	31.98	
Bromine	79.909	⁷⁹ Br	78.9183	100.0	For others, mass
		⁸¹ Br	80.9163	97.3	difference is >1.
Iodine	126.904	127I	126.9045	100.0	


These differences are exhibited as multiple peaks in mass spec.

Atoms are nicknamed "A + n" in mass spec, based on most prevalent higher isotope mass.


Element	Atomic Weight	Nuclide	Mass	Relative Abundance	
Hydrogen	1.00797	^{1}H D(² H)	1.00783 2.01410	100.0 0.015	H: "A + 1".
Carbon	12.01115	¹² C	12.00000 ^b	100.0	Contributes to
		13C	13.00336	1.11	peak at M + 1 in
Nitrogen	14.0067	14N	14.0031	100.0	, MS.
		15N	15.0001	0.37	1010.
Oxygen	15.9994	16O	15.9949	100.0	
		17O	16.9991	0.04	
		18O	17.9992	0.20	
Chlorine	35.453	35Cl	34.9689	100.0	Br: "A + 2".
		37C1	36.9659	31.98	
Bromine	79.909	⁷⁹ Br	78.9183	100.0	Contributes to
		81Br	80.9163	97.3	peak at M + 2 in
Iodine	126.904	127I	126.9045	100.0	MS.

Isotopic Abundance and Peaks


A + *n* isotopes generate characteristic patterns in mass spectra.

Halogen isotopes generate characteristic patterns in mass spectra.

Though isotopic contributions of ¹³C, ²H to MS are small, they add up.

If, for a carbon-containing compound, peak A has intensity 100, then higher-mass peaks have intensity: