UV-Visible Spectroscopy

Electronic excitation spectroscopy:

Photon absorption promotes an electron from its ground state to an excited state.

Goal:

Spectrum relating absorbance to photon energy/wavelength.

UV-Visible Spectroscopy

Electronic excitation spectroscopy:

Photon absorption promotes an electron from its ground state to an excited state.

Applications of UV-vis absorption to organic chemists:

- Characterizing chromophores (absorbing functional groups)
- Tuning absorbance detectors in chromatography
- Observing molecules on fluorescent TLC plates

- Each element of the array collects at a different wavelength.
- On-chip integrators sum intensity over a range of positions.
- Extremely fast, so easy to use in chromatography detection.

UV/Vis Spectrophotometry Instruments

Benchtop vs. configurable

Can adapt fiber optic devices to lots of applications.

Beer's Law and Concentration

" ϵ " is often reported at $\lambda_{\text{max}},$ wavelength of maximum absorbance.

Vibrational Structure in UV-vis

Chromophore	Compound	Transition	λ_{max} (nm)	ε
С–Н	CH ₄	$\sigma \rightarrow \sigma^*$	122	
C–C	C_2H_6	$\sigma \rightarrow \sigma^*$	135	
C=C	C_2H_4	$\pi \rightarrow \pi^*$	103	15000
			174	5500
C=C=C	C_3H_4	$\pi \rightarrow \pi^*$	170	4000
			227	630
C≡C	R–C≡C–R´	$\pi \rightarrow \pi^*$	178	10000
			196	2000
			223	160
C-O	R–O–R	$n \rightarrow \sigma^*$	180	500
C–O	R–O–R´	$n \rightarrow \sigma^*$	180	3000
C–N	Amino	$n \rightarrow \sigma^*$	190-200	2500-4000
C–S	R–S–H	$n \rightarrow \sigma^*$	195	1800
C–S	R–S–R	$n \rightarrow \sigma^*$	235	180
C=O	Aldehyde/Ketone	$n \rightarrow \sigma^*$	166	16000
	-	$\pi \rightarrow \pi^*$	189	900
		$n \rightarrow \pi^*$	270	10-20
C=O	Carboxylic acid	$n \rightarrow \pi^*$	200	50
C=O	Carboxylate	$n \rightarrow \pi^*$	210	150
C=O	Ester	$n \rightarrow \pi^*$	210	50
C=O	Amide	$n \rightarrow \pi^*$	205	200
C=N	$(NH_2)_2C=NH$	$n \rightarrow \pi^*$	265	15
C=N	CH ₂ C≡N	$\pi \rightarrow \pi^*$	<170	
N=N	Me-N=N-Me	$n \rightarrow \pi^*$	350-370	15
N=O	Me ₂ NO	$n \rightarrow \pi^*$	300	100
			665	120
N=O	Me ₂ NO ₂	$n \rightarrow \pi^*$	276	27
C=C=O	Et ₂ C=C=O	$\pi \rightarrow \pi^*$	227	360
	2.2	$n \rightarrow \pi^*$	375	20
C-Cl		$n \rightarrow \sigma^*$	173	200
C-Br		$n \rightarrow \sigma^*$	208	300
C–I		$n \rightarrow \sigma^*$	259	400

Bond excitations evaluated on tables.

Fluorescent Molecules Permit Multicolor Imaging & Detection in Biology

NIH 3T3 cells; mitochondria stained to fluoresce **red**, cytoskeleton fluoresces **green**, nuclei fluoresce **blue**. Fluorescent molecules image sensitively because the incident light wavelength can be blocked with an optical filter.

(Image: Invitrogen Probes catalog)