In-Class Exercise Solutions:
 Ketone Radical Cation Fragmentation

a. The highest-energy electrons in this structure are the oxygen lone-pair electrons, and these are the easiest to remove by El.

b. α-cleavage occurs on either side of the carbonyl:

In each of these cases, our even-mass parent fragments into two odd masses, only one of which (the cation) is visible by mass spectrometry. The odd-mass peaks are 99, 71, and 43 amu . If any of these corresponded to the ions above, those ions' $\mathrm{C}_{n} \mathrm{H}_{2 n+1}$ parts would be 28 amu (the CO group) less than the daughter itself, so $\mathrm{C}_{n} \mathrm{H}_{2 n+1}$ would be 71,43 , or 15 amu . Two of these three numbers have to add up to 114 to make the whole $m=144$ molecule, and only $71+43$ does that. So that means our molecule has 5 carbons on one side and 3 on the other.

C.

86

114
d. Okay, this question was pretty hard. The $m=58$ peak comes from a second McLafferty rearrangement on top of the first one:

114

The $m=43$ peak comes from loss of CO from the $m=71$ ion:

e. All of my drawings above show a linear ketone, but I think that the same fragmentations could also be drawn if the $\mathrm{C}_{5} \mathrm{H}_{11}$ part were branched at the end. Either of these structures is possible.

