How Do We Deal with Many J's?

H_A: 1H

H_B: 1H

H_C: 1H

Shortcut for Determining J Values

- 1. Determine relative peak sizes
 - First peak is always intensity 1
 - Number all positions in order (a peak with intensity of 2 will have 2 numbers, etc.)
 - Sum of peak sizes must add up to 2ⁿ
 - n = number of J values
- 2. Distance from $1 \rightarrow 2 = J_1$
- 3. $1 \rightarrow 3 = J_2$
- 4. Cross out number representing $J_1 + J_2$
- 5. $1 \rightarrow n + 1 = J_n$
- 6. Cross out all additive combinations of J_1 , J_2 ... J_n that haven't been crossed out yet (should be 2^{n-1} combinations)
- 7. Repeat 5, 6 ...

Resolution Enhancement with Window Functions

Resolution Enhancement with Window Functions

Spectral Distortions at Low $\Delta v I J$

Spectral Distortions at Low $\Delta v I J$

Important takeaway:

Inequivalent protons with identical chemical shift do not split one another.