How Do We Deal with Many J's?

$H_{A}: 1 H$

$H_{B}: 1 H$

$H_{C}: 1 H$

Shortcut for Determining J Values

1. Determine relative peak sizes

- First peak is always intensity 1
- Number all positions in order (a peak with intensity of 2 will have 2 numbers, etc.)
- \quad Sum of peak sizes must add up to 2^{n}
- $n=$ number of J values

2. Distance from $1 \rightarrow 2=J_{1}$
3. $1 \rightarrow 3=J_{2}$
4. Cross out number representing $J_{1}+J_{2}$
5. $1 \rightarrow n+1=J_{n}$
6. Cross out all additive combinations of $J_{1}, J_{2} \ldots J_{n}$ that haven't been crossed out yet (should be 2^{n-1} combinations)
7. Repeat $5,6 \ldots$

Resolution Enhancement with Window Functions

Problem:
End of FID contains noise that reduces frequency resolution.

Solution:

Multiply FID by a function that de-emphasizes problem areas.

Consequence:
Integrals no longer proportionate.

Resolution Enhancement with Window Functions

Problem:
End of FID contains noise that reduces frequency resolution.

Solution:

Multiply FID by a function that de-emphasizes problem areas.

Consequence: Integrals no longer proportionate.

Spectral Distortions at Low $\Delta v / J$

(

Spectral Distortions at Low $\Delta v / J$

