Chiral Derivatizing Agents for Absolute Stereochemistry Determination ("Mosher's Method") 1-phenylethanol: $$R$$ or S ? H₃C Ph H O CI Ph OCH₃ Ph CF₃ Ph OCH₃ Ph OCH₃ Ph OCH₃ R,S) R,S indistinguishable by NMR 1-phenylethanol: R or S ? #### MTPA Esters as NMR-Distinguishable Chiral Derivatives (Works best for secondary alcohols.) #### MTPA Esters as NMR-Distinguishable Chiral Derivatives (S)-MTPA ester group alters chemical shifts of R₁, R₂ in a predictable way. #### MTPA Esters as NMR-Distinguishable Chiral Derivatives (*R*)-MTPA ester group has opposite effect on chemical shift. So, if we define $\Delta \delta = \delta_S - \delta_R$, If a nucleus shows $\Delta\delta > 0$, must be R₂. $\Delta\delta$ < 0, must be R₁. ### MTPA Esters as NMR-Distinguishable Chiral Derivatives # MTPA Esters as NMR-Distinguishable Chiral Derivatives # MTPA Esters as NMR-Distinguishable Chiral Derivatives $$\Delta \delta = \delta_{S} - \delta_{R}$$ +0.19 +0.47, +0.40 H -0.06 -0.06 H -0.05 H H OCH₃ Ph OCH₃ CF₃ (S ester) -0.07 ottelione A (?) Hollie Lewis # Other Chiral Derivatives and Complexing Agents (There are lots.)